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We examine the survival of nonrational investors in an evolutionary game model with
a population dynamic for a large economy. The dynamic indicates that the growth rate of
wealth accumulation drives the evolutionary process. We focus our analysis on the sur-
vival of overconfidence and investor sentiment. We find that underconfidence or pessimism
cannot survive, but moderate overconfidence or optimism can survive and even dominate,
particularly when the fundamental risk is large. These findings provide new empirical im-
plications for the survivability of active fund management. Our results lend support to the
relevance of the psychology of investors in studying financial markets:nal of Economic
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In recent years, there has been a growing interest in studying the behavior
effects of nonrational investors, who misperceive the distribution of asset value:
financial markets. In these studies, there is an implicit assumption that nonratic
investors are relevant and even critical for the study of financial markets. Th
are, however, two opposing views on the relevance of this issue in the literat
On the one hand, Black (1986) argues that if all investors are rational and perc
their information correctly, then there will be very little trading in individual asset
since itis in the interest of informed traders not to trade with each other (see ¢
Milgrom and Stokey (1982)). Furthermore, if there is little trading and liquidity i
individual assets, then it will be difficult to price index funds and derivative asse

1 This paper is a significantly revised and retitled version of my earlier working paper, “Overcor
dence, Deligated Fund Management, and Survival.” | thank Nick Barberis, Jeff Fleming, Jim Friedn
Simon Gervais, Pete Kyle, Robert Shiller, Andrei Shleifer, Anjan Thakor (the editor), Richard Tha
two anonymous referees, and the seminar participants at the 1997 NBER Behavioral Finance Prc
Meeting, the 1997 and 1998 Western Finance Meetings, the Fourth Annual Conference of the Chi
Quantitative Alliance, IMF, and Rice University for helpful discussions and comments. The us
caveat applies.
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Therefore, the entire financial market cannot function properly without liquidity i
individual assets. Black then posits that noise traders, who misperceive their n
as information, provide the necessary liquidity to the market. As a result, inform
traders now have incentive to trade and their information is thus incorporated il
prices. In essence, the whole structure of financial markets depends on the:
presence of these noise traders. On the other hand, Friedman (1953) argues
nonrational investors are irrelevant because they will be driven out of the mar
by rational investors eventually in the process of natural selection. In this paf
we draw a line between the two opposing views by examining the viability ¢
nonrational investors and, in particular, the survival of overconfidence and inves
sentiment. If nonrational investors could not survive in the long run, then the
impact on asset prices and markets would be at best transient. On the other hal
nonrational investors could survive, it would then lend support to the relevance
the psychology of investors in studying financial markets. Thus, the key quest
we confront is whether nonrational investors can survive in the long run.

In order to examine the survival issue under a natural selection process,
consider the approach of evolutionary game theory since it is designed to ana
the survival of interactive agents in the evolutionary sense (Maynard Smith (19
and Friedman (1991)). In our model, the choice of rational or nonrational typ
is formulated as a pure strategy in the evolutionary game. The evolution of
population of investor type is essentially driven by the relative fitness of the tv
strategies in terms of their current payoffs. In this context, we examine the lor
run steady state of the population distribution between rational and nonratio
investors in the market.

While the general evolutionary framework can apply to a variety of cases, \
focus on two common scenarios. In the first scenario, we consider pairwise c
tests where every round of interaction involves two randomly matched individt
investors who play a bilateral game in normal form. This scenario captures
strategic element in markets with imperfect competition. This setup is appropri
for analyzing the kind of markets where there exist a few big players with signi
cant market power. In the second scenario, we examine playing-the-field cont
where a large number of investors interact jointly in the market and yet none
them have market power. This scenario is relevant for studying the competit
market where all investors are price takers. In this paper, we adopt the first scen
to analyze the survival of overconfident traders with market power as describe
Kyle and Wang (1997) and the second scenario for the survival of noise trad
without market power as described in De Long, Shleifer, Summers, and Waldm:
(henceforth DSSW) (1990). Both Kyle and Wang (1997) and DSSW (1990) d¢
with static models in which the population share is fixed, and hence the models
inadequate to address the long-run survival issue. In this paper, we extend tl
static models into evolutionary game models and examine the resulting popula
dynamic of nonrational traders according to their relative fitness in the game.

The population dynamic that emerges from the two models yields rema
ably similar results regarding the survival of nonrational traders as a group. Fi
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nonrational traders with negative sentiment will never survive in the long run. Tl
applies to underconfidence in Kyle and Wang (1997) and to bearishness in DS
(1990). Second, nonrational traders with extremely positive sentiment may

survive either. This applies to excessive overconfidence in Kyle and Wang (19
and to excessive bullishness in DSSW (1990). Third, nonrational traders w
moderately positive sentiment tend to dominate the market, particularly when
variance of the risky asset’s value (which we call the "fundamental” risk) is larg

Note that aggressive trading tends to create a large price impact. Moderate
timent and large fundamental risk both serve to reduce the adverse price imy
As a result, individual nonrational traders may bankrupt sooner than individ
rational traders because of the price risk (Samuelson (1971, 1977)). But, no
tional traders as a group with a higher expected return can still accumulate we
at a higher speed than rational traders and hence increase in population. It
this spirit that we demonstrate the survival of nonrational traders as a group, ra
than as individuals.

Itis important to note that the economic rationale for the survival of overcon
dence in Kyle and Wang (1997) is different from that for the survival of the bullis
sentiment in DSSW (1990). In the latter case, the bullish sentiment causes n
traders to hold more of the risky asset than their rational opponents, thus gainil
higher expected return. In the former case, however, there is no such risk prem
given that all traders are assumed to be risk neutral. Instead, overconfidence |
investors to buy more of the asset when the traders receive good signals and t
more of the asset with bad signals. As a result, the demand differential betweer
overconfident traders and their rational opponents tends to be positively correl
with the asset’s value, thus yielding a higher expected return to the overconfic
traders.

Some recent attempts addressing the survival issue include DSSW (19
Blume and Easley (1992), Palomino (1996), Wang (1998), and Hirshleifer &
Luo (2001). DSSW (1991) study the wealth accumulation process for traders,
they assume the risky assets’ supplies to be infinitely elastic and the return
be exogenously given. As a result, while investors’ beliefs affect their demar
for risky assets, they do not affect the prices of the risky assets. This is in sh
contrast to our model where both investors’ demands and the equilibrium price
influenced by their beliefs.

Blume and Easley (1992) find that nonrational traders can survive better thar
tional traders if nonrational traders’ utility is closer to log-utility than their ratione
opponents’. The survival of nonrational traders in this model is due to system:
differences in utility functions. On the one hand, our results capture the same ef
of the utility-based argument in the sense that overconfidence and bullish sentir
make nonrational traders trade more aggressively like log-utility traders. On
other hand, the aggressiveness in our model comes from irrational beliefs, ra
than different utility functions. Essentially, our paper shows that given the sa
utility functions, nonrational investors can still survive if their irrational belief
make them trade more aggressively in the right way.
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Moreover, in the case of overconfidence (Kyle and Wang (1997)), both ratiol
and nonrational traders are risk-neutral and hence both trade more aggress
than log utility traders do, but still we show that moderate overconfident trade
can survive better than their rational opponents. Palomino (1996) finds that spite
noise traders may earn a higher expected utility than their rational opponents do
eventually dominate the market. In contrast, our model does not assume spit
behavior for nonrational investors.

Wang (1998) extends Kyle (1985) by incorporating overconfidence into the ¢
namic model of insider trading. He shows that the overconfident insider trades m
aggressively than he or she would if he or she were rational. In anticipating st
aggressive informed trading, market makers reduce liquidity. This, in turn, gen
ates greater profits for the overconfident insider at the expense the liquidity trad
This resultimplies that overconfidence can help a monopolistic insider amass €
greater wealth and power, thus strengthening his or her dominance in the mar

Hirshleifer and Luo (2001) consider a population dynamic based on imitation
the recent profit in a competitive market. They find that risk-averse overconfide
traders take on more risk and hence earn higher profits than rational traders
Both Wang (1998) and our paper show that overconfident traders can still m:
higher profits without such a risk premium and eventually come to dominate t
market.

Most important, while our survival analysis is much in the spirit of the previ
ous literature, this paper takes a further step forward by explicitly modeling t
wealth accumulation process that emerges from the market competition betw
the group of rational investors and the group of nonrational investors in a la
economy. As a result, the population dynamic examined in this paper does
depend on individual adaptation as has often been assumed in previous litera
The endogenously determined group wealth accumulation process thereby di:
guishes the current paper from much of the previous literature with exogenc
imitation processes.

The plan of this paper is as follows. Section | develops a general populat
dynamic between rational and nonrational traders in a large economy. The pop
tion dynamic conforms to the replicator dynamic in a standard evolutionary gar
Section Il examines the survival of overconfidence in a pairwise contest basec
the trading mechanism in Kyle and Wang (1997). Section Ill examines the survi
of investor sentiment in a playing-the-field contest based on the trading mec
nism in DSSW (1990). Section IV discusses the robustness and implications
our models and analysis. Section V concludes. All proofs are in the Appendix.

. POPULATION DYNAMIC IN ASSET MARKETS

A. The General Framework

Consider a large population of individual traders who have two strategies
phenotypes) available: rational strategy (type-1) and nonrational strategy (type
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Atanytimet, letM; (t) be the number of individual traders who adopt strategy (typ
i € {1, 2}. The associated population profile is therefore defined as the orde
pair x(t) = (X1(t), X2(t)), wherex; (t) = M; (t)/(M1(t) + My(t)) is the population
share of typé-traders. The population staxét) is thus identified with a mixed-
strategy in the associated strategy simplesuch thatx(t) € A = {x(t) Ri |
x1(t) + xo(t) = 1}. Each strategy induces a payoff for the individual trader wh
adopts it, given the strategy profile of the rest of the population. Let the payoff
any pure strategye {1, 2}, given the population stat€t), be denoted a(i, x(t)).
The average payoff to an individual trader drawn at random from the populat
is thus given byu(x(t), x(t)) = 32, xi (t) - u(i, X(t)).

Following the approach in evolutionary games, let current payoffs be the
termining factor for the relative fitness of different strategies and, as a res
drive the evolution of their corresponding population shares. In other words, ¢
rent payoffs from trading activities represent the incremental effect on the
ness of different types, measured as the number of each type of trader. All o
factors that are independent of the current payoffs affect only the absolute
ness of each type, but not the relative fithess of different strategies. Let the
birthratex at any timet represent these other factors as background fitness in
pendent of the current payoffs and let the population of traders evolve conti
ously over time. This setup results in the following population dynamic for type
traders,

Mi(t) = [ic + u(i, x(V)] Mi(t), 1)

where M; (t) is the instantaneous rate of the change in the population ofityp
traders at timé. The corresponding dynamic for the population share of type
tradersx; (t) is straightforward to calculate and obtained as follows:

Xi(t) = [u(i, x(t)) — u(x(t), x(t)] i (t). )

This dynamicimplies that the type of traders associated with better-than-avelr
payoffs increases, while the type associated with worse-than-average payoff:
creases in the process of evolution. As expected, this dynamic is independel
the common background fithess measure, i.e., net birthrdtés worth nothing
that the dynamic exhibits the same form of the usual replicator dynamic (Tay
and Jonker (1978)) in evolutionary games. So far, we derive a general popula
dynamic without specifying a particular payoff function. Clearly, the dynamic d
pends on the choice of the payoff function, which in turn depends on the as
market in question. In Section B, we show that in a large economy the investm
return of each strategy (type) emerges as the strategy’s (type’s) payoff functior
the population dynamic in the process of wealth accumulation.
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B. The Population Dynamic in a Large Economy

Consider a large economy with a sufficiently large number of risky asset m
kets,N. In each period (t =1, 2,...), the N risky assets’ returns, denoted by
1,2, ..., FN, are independently and identically distributed across markets. Ea
asset marken (n =1, 2, ..., N) has two types of traders, denoted iby 1, 2.
Type-1 traders are those who have correct beliefs about the distributions of ri
assets in the market, whereas type-2 traders are those who misperceive the dic
butions of the risky asset due to cognitive errors (Kahneatah (1982)). In this
sense, type-1 traders are rational and type-2 traders are nonrational. All trader:
endowed with a constant capitalat the beginning of each period and may borrow
or lend at a nonnegative riskfree rateln each period, individual typetraders
in asset markeat choose their optimal demartg,, for risky assen to maximize
their expected utility of the end-of-period wealth, given the current market pri
pn and their beliefs and information. At the end of the period, assetturnr, is
realized and the typetrader’s investment return, denoted Ry, is given by

ani,n

Ron=cinm+1—anr, wherew; n = is the weight in risky

assen for the typet trader. (3)

The end-of-period wealth of typietraders as a group is the sum of the realize
end-of-period wealth of all individual typietraders across markets. Letw; (t) =
Co - M;(t) be the wealth of typétraders as a group at the beginning of pettiod
The population share of the typéraders as a group in periogdx; (t), is therefore
determined by its wealth share at timex; (t) = w; (t)/(wa(t) + wa(t)), fori = 1,
2. This captures the notion that the more wealth a group has the more populous
group becomes. The distinction between weailk{it), and population sharg;(t),
is important because a group of traders can have positive wealth and yet bec
extinct in terms of its population share, when the group’s speed of accumulat
wealth is of a lower order relative to the other group. In order to emphasize f
dependence of individual traders’ returns on the population state, Ririfex(t))
as the return of individual typetraders in marken, given the current population
statex(t). Similarly, write R; (x(t)) = Z,’Ll bi n FNQi,n(x(t)) as the average return of
type4 traders across markets in peripdvhere the weighb; , is the relative size
of typed traders in market such that the weights across markets sum to one; i.e

r']“zl bi » = 1. In other words, the average return obtained by a given trader ty
depends not only on the return he or she achieves in each mérjﬁéx(t)), but
also on his or her relative size in each of those markets,

The wealth of type-traders as a group at the beginning of pertod 1 is
therefore given by

wi(t +1) = wi (O[1 + Ri(x(1)] = co - Mi(t + 1). 4)
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Now, consider a “smooth” continuous-time counterpart of the above discre
time wealth accumulation process such that at any frac&iohthe period, the
wealth of typettraders as a group at tinet- § is given by

wit +8) = wi (O[L + SR (x(t))],  where 0< 6§ < 1. (5)

Consequently, the population share of tygeaders as a group at timet § is
given by

wit+8) xR+ R
Yiawit+8) IO +8- Ry(x()]

X (t +8) = (6)

The instantaneous rate of the change in population share &t tiex@oted by; (t),
is obtained as follows:

(0 = lim DX 1 xR ) — Ry )
= Xj (t)[lii(x(t)) — E(x(t))], fori,j=1,2 and i #j, and
= 2 _
RO = Y% (D) R (x(0) @

i=1

This dynamic indicates that the growth raxe(t)/x; (t), of groupi’s population
share equals the difference between the group’s average return across all ma
Ri (x(t)), and the population-share weighted average return of all traders in
economy,R(x(t)). This population dynamic emerges from the process of as:
accumulation and it shows that the investment return of different strategies (tyy
drives the evolutionary process in asset markets. When compared to the dynan
(2), the dynamic in (7) indicates that the investment return of each strategy (ty
is the strategy’s (type’s) payoff function for the population dynamic. Intuitivel
this dynamic captures the spirit in real-world asset markets in the sense thai
rise and fall of investment funds depend on their relative return performance
the markets (Lakonishogt al. (1992)). This process is also consistent with thi
practice in real life in the sense that old investors die and new investors inh
money and the strategies of their parent investors.

In general, the analysis of the stochastic process of the population dynamic ir
is complex, because the average investment return ofitinagers, i.e.R; (x(t)),
depends on individual typetraders’ return in each marketi.e., R ,(x(t)), which
is stochastic. However, if typetraders’ size-adjusted returns, i, Ri n(x(t)),
are independently distributed with finite variances across markets, then the &
age return of type-traders across markets converges to the expected return «
representative typetrader, denoted bi[R; (x(t))], as the number of markets,
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becomes sulfficiently large (see Shiryayev (1984, p. 364)). That is,

N
R(X() =Y binRia(x(t) > E[R(x(t)]. asN — oo, fori =12
n=1
(8)

Since we consider an economy where the number of markets is sufficiently la
and the risky assets’ returns are independently and identically distributed aci
markets, the above convergence result in (8) naturally holds in our model. We d
the subscriph in the RHS of (8), since the expectations are identical fon.dih
such a large economy, the general population dynamic in (7) therefore becol
the following:

X (8) = % ()(L — X (O)(ELR (x(t)] — E[R; (x(1)).
fori,j=1,2 and i #j. (9)

The population dynamic in (9) shows that in a large economy the instantane
rate of change in the population share depends on the current expected returr
ferential between the two types of traders, iE[R; (x(t))] — E[Iij (x(t))], which,

in turn, depends on the current population staf@, In other words, the expected

returns depend on the current population state and, at the same time, the ch
in the current population state depends on the expected returns. Such a dyn:
relationship is important in real-world markets, because although higher expec
returns tend to generate a greater population share, the greater population ¢
up to a certain level may hurt the expected returns in the future. Hence, it
important to determine simultaneously the population shares and the expe
returns in a dynamic system as in (9). This is in contrast to the imitation pr
cess of DSSW (1990) where the returns are calculated under the assumption
the noise trader share is fixed. Moreover, our endogenously determined gr
wealth accumulation process distinguishes our population dynamic from otl
dynamics based on exogenously chosen individual imitation process as in DS
(1990).

So far, we develop the population dynamic between rational and nonratio
traders without specifying any particular kind of nonrational traders and show tl
their survival depends on the relative fithess as measured by their current expe
return. In order to examine the survival of a particular kind of irrationality, on
needs to model the trading game between the two types of traders and de
their corresponding payoffs, i.e., the expected returns, as a function of curr
population state. This is what we turn to in the next two sections. Section
examines the survival of overconfidence in a pairwise contest and Section
examines the survival of investor sentiment in a playing-the-field contest.
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II. OVERCONFIDENCE IN A PAIRWISE CONTEST

In this section, we consider overconfident traders with market power in
pairwise contest. Consider a large economy withisky assets, whose values
U1, U2, ..., UN are independently and identically distributed at the end of ea
period. For simplicity, normalize the risk-free rateto zero. The economy is
populated with risk-neutral informed traders of two possible types: rational a
nonrational. At the beginning of each period, informed traders do not know whi
type of the other informed traders they are going to face, since they have
possibility of trading against rational and nonrational traders. Then, nature dr
randomly a pair of informed traders from the current distribution of the populati
for each markeh (n =1, 2,..., N), independently across all markets. Thus,
in each market there are four possible type combinations of the two inforrr
traders thus drawn. Denote the possible type combinationg by} € {(1, 1),
1, 2), (2, 1), (2, 2), where {n, jn) = (1, 2) means that the first informed trader
drawn in markem is a type-1 (rational) trader and the second informed trad
is a type-2 (nonrational) trader, etc. The probability of each type-combinati
drawn in each market is governed by the current population stédde= (x1(t),
Xo(t)) in the large economy. Specifically, with probability;(t))? the pair of
informed traders thus drawn is both rational, with probabilityt) - x,(t)
the pair of informed traders consists of one rational and one nonrational, etc.

In each period, after a particular type combination |,) is thus drawn in
marketn, it becomes common knowledge to all market participants. These t
informed traders then patrticipate in one-shot trading along with liquidity trade
and market makers in the market, based on the trading mechanism of Kyle
Wang (1997 . For simplicity, we suppress the time index what follows, but
it should be understood that all random variables discussed below depend ¢
Informed traderj(j = 1, 2) drawn in markeh has a unique access to a private
signal§; , about the asset’s valug in the market. The correct distribution of the
signal isS; n = Un + &; 1. The forecast errorg; ,’s are independently and identi-
cally distributed forj = 1,2andh = 1, 2, ..., N. However, the informed trader’s
belief about his or her signal depends on his or her type. In particular, inforn
trader j thinks his signal is5; » = Un + K& n. If the trader is rational, his or
her belief reflects the correct distribution, i.K; = 1. On the other hand, if the
trader is not rational, then his or her subjective belief is parameterizéd, by
K, whereK is a nonnegative misperception parameter suchKkhst 1. Further-
more, a nonrational trader is overconfident if his or her subjective distribution
too tight, i.e., 0< K < 1, or underconfident if it is too loose, i.&, > 1 (Oskamp
(1965), Alpert and Raiffa (1959), Einhorn and Hogarth (1978)).

With risk-neutrality, informed tradgrsubmits a market ord€j; n = d;j.n(5j.n)
to maximize his or her conditional expected trading prdfti;,n, given his private

2 See Hirshleifeet al. (1994), Wang (1998), Odean (1998), and Daatell.(1998, 2000) for other
overconfident trading models.
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signal§; , i.e.,

'\él_ax E[ﬁj,n [8jn= Sj.n] = E[(Un — f’n)qj,n | 8jn= Sj,n],
j.n
forj=12 and n=1,2,...,N. (20)

The subscripf of the expectation operator denotes that the expectation is ba:
on tradeyj’ s belief. Liquidity traders in marketsubmit a random quantif¥, and
their trading across marketg;’s, are independently and identically distributed.
Competitive market makers (also called trader 0) observe the order imbala
¥n = Gun + G2.n + Z, and then clear the market by setting the asset gricagual

to the conditional expectation of the asset valye given the observed order
imbalancey, as follows:

Pn = p(yn) = Eo[ffn | yn = ql,n + qz,n + zn]- (11)

The subscript O of the expectation operator denotes that the expectation is base
rational beliefs. Exogenous variables & n, &, Z, are independently and nor-
mally distributed with means zero and varianegso?, o2, o2, respectively. The
quality of the private signals may be measured (inversely) by the noise-to-sig
ratiod = oe/0,. The amount of noise trading in each market may be measured b
normalized rati® = o,/0,. Kyle and Wang (1997) show that the one-shot mode
given the type combination, j»), has a unique linear equilibriung(n, d2.n, Pn)

as follows,

. . (1+2K20%) _
G1n = y1nSin = ————"(Un + B1n), (12)
Anh
. . (1+2K20%)
o.n = Y2nS2n = 7(% + ez,n), (13)
Anh
Y1n + Y2n

Pn = An¥n = (@un + Gon + 20), (14)

(yin+ v2n)? + (V12,n + )/22,n)92 +¢?

whereh is a strictly positive constant, givag;, K, andé.

The intensity parameteys , andy, » and liquidity parametex,, depend on the
noise-to-signal rati@, the noise trading ratig, the misperception paramet€r
and the type combinationy( jn) drawn at the beginning of the period. Moreover,
for the same type combination( j,) = (i, j) the three parameters are uniquely
determined, regardless of whats. Hence, without loss of generality, we may
suppress the market indexand writey1(i, j), y2(, j), andA(i, j) as the three
parameters identical in those markets with the same type combinatjpri/Xith
the above equilibrium, the typerader’s return, given a typespponent in market
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n, denoted byR,(i, j), is obtained as follows:

Gun
Co
X [Un — A3, [)0a(, ])Bn +&1n) + 120, )00 + &0n) + Z0)]}. (15)

Bai. 1) = 20 (@, — B) = é{n(i, D)o +8.0)

Note thatin the last equality of (15) we substitutedpr andp, from Eq. (12)—(14).

The individual type trader’s return in marken, Rn(i, j), is stochastic be-
cause the realization of the type combinatipf)(in each market has a probability
Xi (t)x; (t). Hence, we may identifythﬁ subsequence of those markets with the sé
realized type combinatiom,(j ) as{ny},_} . In each markety, the individual typei-
trader’s returnﬁnk(i , ), is still stochastic because it depends on the exogenoust:
dom variablesvy, & 5, &, andz,. Note, however, that these exogenous variable
are all independently and identically distributed across markets. As a result,
individual typet trader’s returns in these markefs,k(i, j), are independently and
identically distributed too. The average return of the typraders facing typg¢op-
ponents across these markets is giveRly j) = ZKN;JI b, j) - F?nk(i, i), where
the weighth(i, j) is the relative size of the type combinatian j) in marketny
such that the weights across these markets sum to oneD'k\"gl,bk(i, j)=1.1If
the population share of each group in the economy is bounded below from z
then the number of markets of each type combinatiof)(becomes sulfficiently
large in a large economy, i.e.,iN— oo, asN — oco. Moreover, in the large
economy the average return of the tyipieaders across these markets converge
to the expected return of a representative tyfrader in these markets, denotec
by E[R(, j)]. l.e., asN — oo,

Ni.j . .
R(i, j) = D _bx(i, j) - R, (i, ) > E[RG, j)]
k=1

2
)

= yali, D@ =20, DG, 1)+ r2(, 1) = 20, Dl §)6%). (16)

Note that the last equality in (16) is obtained by taking expectations on both si
of Eq. (15). For simplicity, we omit the subscript O for the expectation operator,
it should be understood that the expectation is based on the correct distributi
i.e., rational beliefs. In addition, we drop the market indgxwhen we write
the expected returE[R(i, j)], because the individual returi, (i, j) for all ny
are independently and identically distributed across these markets. Equation
highlights the strategic nature of the pairwise contest between the two rando
matched informed traders since each trader’s expected return depends also c
other trader’s type.

The average return of the typetraders across all markets in the economy

Ri(x(1), is given byR; (x(t) = srpitiz - R(. 1)+ 52 - R(. 2), where
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the weightb(i, j) is the relative size of the type combinatidn {) in the econ-
omy such that the weights sum to one, i¥;_; >°7_, b(i. j) = 1. In the large
economy, the relative size of each type-combination approaches the correspon
population distribution, i.eh(i, j) — x;(t) - x;(t). As a result, the average return
of the typet traders converges to the expected return of the representative tyy
trader,E[R (x(t))], in the large economy. l.e., & — oo,

b(i, 1) b(i, 2)
b(i, 1) + b(i, 2) b(i, 1) + b(i, 2)
— x(t) - E[R(, )] + X2(t) - E[R(i, 2)] = E[R (x(1))].  (17)

R (x(t)) = “R(i, 1)+ -R(i, 2)

Applying the payoff function, i.e., the expected return, in (17) to the gener
population dynamic in (9) yields the specific population dynamic for type-2 trade
in the pairwise contest as follows:

Xa(t) = Xa(t)(1 — X2())(E[Ra(X(t))] — E[Ra(x(1))])
= X(t)(1 — X2(t))((ar + a2)X2(t) — &),
wherea; = E[R(1, 1)]- E[R(2, 1)], a» = E[R(2, 2)] — E[R(L, 2)]. (18)

The population dynamic in (18) depends crucially on the two return paramete
a; anday, wherea; represents the expected return differential between a type
trader and a type-2 trader, both having a type-1 opporsnepresents the ex-
pected return differential between a type-2 trader and a type-1 trader, both havil
type-2 opponent. We may partition the population dynamic (18) into four mutua
exclusive categories, depending on the two return parameteas: )0, a, < 0,

(I apg <0,a,>0,(lll) ag > 0,a, > 0, and (IV)a; < 0, a; < 0. Following the
standard analysis of the dynamic equilibrium in the corresponding evolutionz
game, we obtain the asymptotically stable equilibria for each category. The res
are shown in Theorem 1 below:

THEOREM 1. In our dynamic pairwise contest between rational and nonra
tional informed tradersthe resulting population dynamic is given (h8). The
long-run equilibria of the dynamic have four categoriegepending on the signs
of the return parameters;and &, defined in(18):

() If one always earns a higher expected return by adopting a rational strg
egy than by adopting a nonrational strategggardless of his or her opponéat
type then rational traders as a group will dominate the economy in the lon
run.

(I1) If one always earns a higher expected return by adopting a nonration
strategy than by adopting a rational strategggardless of his or her opponést
type then nonrational traders as a group will dominate the economy in the lor
run.
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(111 If one always earns a higher expected return by adopting the same st
egy as his or her opponésttype then rational(nonrationa) traders as a group
will dominate the economy in the long run when the initial population share of t
nonrational traders x,(0), is below(above the threshold level g(a; + ay).

(IV) If one always earns a higher expected return by adopting the oppos
strategy of his or her opponésttype then both rational and nonrational traders
will survive inthe long run such that their population share distribution approache
the unigue asymptotically stable equilibriua,/(a; + a2), a1 /(a1 + ay)).

Figure 1 illustrates the evolution of the population share of the nonratior
traders as a group according to Theorem 1. The theorem indicates that nonrati
traders dominate in category I, they may dominate in category Ill if their initi:
population share is greater thagy (a; + az), and they survive in category IV. But,
Theorem 1 does not show whether the nonrational traders in these categorie
clude both overconfident and underconfident traders, only one kind, or even n
if the categories are in fact nonexistent in the model. Note, however, the theol
does show that these results depend on the signs of the two return paraamete
anda,. It turns out that the signs depend only on two key parameters of the mo«
the noise-to-signal ratié (an inverse measure of the quality of the private signal

0 1
I ® < & © Xy
0 1
1 < > > ® x,
0 1
10 ° < o > ° X,
_a
ata
0 1
v o > ® & — x,

FIG. 1. The population dynamic under the pairwise contest.
(1) limi- s X(t) = (1, 0) is the unique asymptotically stable equilibrium.
(1) lim ¢ X(t) = (0, 1) is the unique asymptotically stable eqU|I|br|um
(1) Tim 00 X(t) = (1, 0) if x2(0) € [0, 5 +a ); (0, 1) if x2(0) € (a o 1l
(IV) im0 X(t) = (a1+a2 allJraz) is the unique asymptotically stable equilibrium.

X2 is the population share of the group of type-2 (i.e., nonrational) traders.
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and the misperception parameke(an inverse measure of the confidence level o
traders.) Recall that an informed trader is overconfidentf R < 1, underconfi-
dentifK > 1, and rational iK = 1. We can identify the set of the two parameters
6 andK in Ri that gives rise to each category such that {(0, K) € Ri | ag >
0,ap <0}, 1l ={(0,K) e Ri | a; < 0,a, > 0}, etc. The result is illustrated in
Fig. 2 where th& — K space is normalized int¥ — Y space so that the entire
universeRi can be shown equivalently in the finite spaceZpPx [0, 2].

Several observations about Fig. 2 are in order. First, underconfident traders
never survive in the long run since the entire parameter space for underconfic
trading, i.e.K > 1, belongs to category I. In this category, rational traders alwa
dominate. Second, the survivability of overconfident traders rises with the qual
of their private signals and falls with the degree of overconfidence. For examy
the figure shows that if the quality of the private signals is sufficiently high, i.e

K
1+K*

2

1.75
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0.7

05 II

0.25 NS

0 ] g2 20
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FIG. 2. The categories of the equilibria under the pairwise contest.

(I) Rational traders dominate nonrational traders in the long run.

(II) Nonrational traders dominate rational traders in the long run.

(1) Nonrational traders dominate if their wealth share is large enough; otherwise, rational
traders dominate in the long run.

* The region NS corresponds to the case where the equilibrium of the one-shot model does not e
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0 is sufficiently small, overconfident traders, i.&,< 1, always dominate in
category Il. One may regard the ex-ante variance of the risky asset v@luas
the fundamental risk in the economy. Holding forecast esgoconstant, then a
smalld = oe/0, implies large fundamental risk2. In this context, overconfident
traders tend to dominate the market when the fundamental risk is large. On the
hand, ifthe quality of the signalsis relatively poor, iéds large, then overconfident
traders can dominate only if their degree of overconfidence is modedf isnot
too small. This result is similar to Hirshleifer and Luo (2001). This similarity i
remarkable because while fundamental risk is priced in Hirshleifer and Luo w
risk-averse traders, the risk is not priced in our model under risk-neutrality.

In category lll, the outcome depends on the initial population share distributi
x(t), and this category comprises only a small subset of the parameterléfgace
Category 1V, where both types of traders survive and coexist, is an empty
Following Kyle and Wang (1997), region NS in the figure corresponds to tl
case where the one-shot model does not have equilibrium. Therefore, for all
parameter space where the equilibrium does exist, given a confidence pandmet
Fig. 2 implies that either rational or overconfident traders will dominate in the lol
run. However, if nonrational traders’ confidence lev€l, changes from time to
time due to some exogenous, e.g., psychological, factors, then Fig. 1 suggests
the competitive advantage of a certain type may shift accordingly over time. |
example, if nonrational traders’ sentiment suddenly shifts from underconfidel
to overconfidence, then rational traders tend to lose their competitive advant
to the newly minted overconfident opponents, as the long-run equilibrium n
changes from category | to Il etc.

The dominance of overconfident traders over their rational opponents depe
on two factors. First, overconfidence acts like a commitment device to aggres
trading, which makes their rational opponents less aggressive (Kyle and W
(1997)). Second, given the private signals, informed traders’ demands are positi
correlated with the risky asset’s value. These two factors together imply that
comparison to rational traders, overconfident traders tend to buy more of the ri
asset when their private signals indicate a positive prospect and sell more w
the signals suggest the opposite. As a result, the demand differential betweel
overconfident traders and their rational opponents tends to be positively correl
with the asset’s value. Such a positive correlation leads to a positive expec
return differential between overconfident and rational traders A[d&Rx(x(t))) —
E(Ry(x(t))] > 0, despite the fact that the model assumes risk neutrality. To s
this, using (3) the expected return differential can be expanded as follows:

E[Rx(x(t))] — E[Ru(x(1))] = E[(@2n(X(t)) — @1.n(X(t)))(Fn —1)]
Elazn(X(t)) — @1n(X(EDI(E[Fn] —T)

+ CoMazn(X(t)) — a.n(X(1)), Fu]

= CoMazn(X(t)) — ax.n(X()). Fu]. (19)
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Although there is no risk premium under risk neutrality, ile[f,] —r = 0, the
expected return differential is positive when the demand differential is positive
correlated with the risky asset’s value, i.€0\d2 n(X(t)) — @1.n(X(t)), Fn] > O.
As a result, the population share of the overconfident traders increases in
evolutionary process.

Ill. INVESTOR SENTIMENT IN A PLAYING-THE-FIELD CONTEST

In this section, we consider noise traders without market power in a playir
the-field contest. Consider a large economy with one riskless asset aistty
assets. The riskless asset is in perfectly elastic supply and pays a fixed divid
r. The price of the riskless asset is normalized at one and hence the divider
is also the risk-free rate. The risky assefn =1, 2, ..., N) yields an uncertain
dividendse; , at the end of each peridgdbut its supply is fixed and normalized
at one. Assume that the dividends, across time and markets are independentl
and identically distributed with normal mearand variance 2. While the risky
asset’s expected dividend paymeris the same as the riskless rate, the expecte
total investment returns of the two assets need not be the same. This is so bec
the risky asset’s price depends on the demand in the market, while the risk
asset’s price is fixed.

In each asset market (n=1,2,..., N), there are many two-period-lived
traders. The specific trading mechanism is based on the overlapping generat
model of DSSW (1996) Traders of the young generation trade the risky asaet
the market priceyx , and then liquidate their positions of the risky asset at the pric
Prr1.n Next period when they become old. As a result, the young traders’ demal
for the risky asset depend on their beliefs about the distribution of the liquida
tion price next period. Given the identical, normal distributions of fundament
dividendset , across markets, the liquidation pricgs 1., across markets are nor-
mally distributed with identical mean; and varlance\er2 . In each marken,
there are two types of traders, depending on their bellefs about the mean,
Type-1 (rational) traders accurately perceive the mean of the liquidation pric
Drs1n, i-€., EX[Pri1n] = nes1, While type-2 (noise) traders misperceive the mea
nt11 by a normal random variable 7, i.€., E2[Pri1] = nts1 + prn. Note that the
superscript of the expectation operator indicates that the expectation is based
typed traders’ beliefs. Following DSSW (1990), let investors’ one-period-ahe:
expectations about the variano%,ﬂ, be equal to the variance in the current pe:
riod, i.e.,E{[o3 ] =03, fori =1, 2.Inaddition, assume that the misperceptior
variableso; n across time and markets are independently and identically distribut
with meanp* and variancearp2 and that they are independent of the fundament:

3 See Kyle (1985), Russell and Thaler (1985), Black (1986), De lairag, (1989), Campbell and
Kyle (1993), Barberi®t al. (1998), and Wang (2000) for other noise trading (or investor sentimen
models.
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dividentset . Note that the “noise trader risk” is greater if the variance of the mi:
perception variablexg, is greater. All traders have CARA utility with a coefficient
of risk aversiony . The representative typdrader in markeh chooses a quantity
qti’n of the risky asseat to maximize his or her expected utility, given the prigg,
and the initial capitaty, as follows:

MaXEL[U (3},1,)] = El[-e ®)tan],
Gt.n ’

whered},; , = Co+ G ,(Etn + Prezn — (L+1)pPn), i =12 (20)

Solving Eg. (20) yields the asset demand for each representative trader as foll

1 P+ —@Q+1)pen, 2 Ttns1tpn—(14T1)pn
t.n 2)/((7,% +O’£2) L0 2)/(%2)l +062)

(21)

Equation (21) indicates thatmllishnoise trader (i.e:.n > 0) holds more of the
risky asset than a rational trader does, whikearishnoise trader (i.e i, < 0)
demands less. The market-clearing price is set such that the total demand for
n equals its total supply (which is normalized to one). Given that the measure
each type of trader in the market is identified with its population share, the mar
clearing condition is:

Gn(L — X2(t)) + G pXa(t) = 1. (22)

Plugging Eg. (21) into (22) and rearranging Yyields the equilibrium pficeas
follows:

Pn= %[I’ + N1 — 2y (Urz;[ + ‘782) + X2(t)/5t.n],

wheres? = XMog

 (A+4r)2e (23)

Equation (23) shows that the equilibrium pripg, in marketn depends crucially
on the misperception variabje » in that market. Given that the misperceptior
variablesp; , across markets are independently and identically distributed, so
the asset price§ , across markets. Furthermore, the investment return of t
typed trader in marken, i.e., F~2i,n(x(t)), is given by

|

fii,n(X(t))=q‘—C;(Et,n+ Poin—(L+0)Pn), fori=12 n=1,2...,N.
(24)

Since the dividends;, and the asset priceB;, are both independently and
identically distributed across markets, so are the investment relﬁ;l,rrr(gx(t)) of
the typet traders. The average return of the tyigeaders across marke®; (x(t)),

is given by R; (x(t)) = Z,Tzl bi,nfzi,n(x(t)), where the weighb; , is the relative
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size of typettraders in market such that the weights across markets sum to on
i.e.,Z,’Ll bi » = 1. Given that the individual returriéi,n(x(t)) are independently
and identically distributed across markets, the average return converges to the
pected investment return of the representative fypeder, i.e.,E(R; (x(t))), in
the large economy. l.e., & — oo.

p— N ~ ~ ~
Ri(x(1)) = D binRin(x(t)) = E[R(X(t)] = E[E[Rin(x(t) | Arall. (25)
n=1

The last equality in Eq. (25) states that the unconditional expected return is
expected value of the conditional expected return, given the misperception v
able gt ». Using Egs. (21)—(24), it is straightforward to calculate the condition:
expected return for each type of trader as follows:

1
Ed[Ron(X(1) | o] = %(r s — (L1 pen)

_ @r{og +07) = %®hn)” 26
 (0f + o)

Ed[Ran(X(t)) | pin]

(2y (o5 + 02) — X2(t)pr.n) (2y (05 + 02) + (1 — X(t))5r.n)
— . @1
2y (0 +02)co

Given (26) and (27), the unconditional expected return differential between 1
representative type-2 trader and the representative type-1 trader in the econc
i.e., E[Ra(x(t))] — E[Ry(x(t))], is obtained as follows:

E[R(x(1))] — E[Ru(X(t)] = E[E:[Ran(X(t)) | pt.n] — Ex[Run(X(t)) | pt.nll
—E i ~ XZ(t)Z)tz,n
= % Pt,n 42)/ (Ué n ‘782)

1 i ,0*2 + 0_2
= (p R — ) (28)
2r (5% + 520)
Applying Eqg. (28) to the general population dynamic in (9) yields the specif

population dynamic for the playing-the-field contest (without loss of generalit
show the population share for type-2 trader):

%o(t) = Xa(t)(L — Xe(D))(E[Ra(x(1))] — E[Ru(x(t))])

2
I¢

Y ((1+r>2 0]

1 . ,0*2+02
= X x(b) (p - — )). (29)
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Given the population dynamic in (29), we examine its dynamic equilibrium fc
lowing the standard analysis in the corresponding evolutionary game. In doing
we consider first the special case without fundamental riskgi%e= 0, and then
the general case with fundamental risk, ic&? # 0, respectively.

A. Dynamic Playing-The-Field Contest without Fundamental Risk

If there is no fundamental risk, i.ex2 = 0, then the population dynamic for the
playing-the-field contest reduces to the following:

Xa(t) = Xa(t)(L — X2()(E[Ra(x(t))] — E[Ru(x(t))])
(14022 +02)
2y 02X%a(t)

= %xz(t)(l — Xa(t)) <p* - (30)

Solving x,(t) = 0 yields the steady states of the population dynamic in (30). Tl
statesx, = 0 andx, = 1 are always stationary in the dynamic. If noise traders c
average have negative sentiment, jpé.< 0, then the expected return differential
is negative for alk(t). This means that starting from any nonstationary ste(tg sz
{(1, 0), (0, 1)}, the population share of the noise traders will decline to zero in tl
long run. On the other hand, if noise traders on average have positive sentinr
i.e.,p* > 0, then for some parameter values the expected return differential is
negative. In this case, the population share of the noise traders will also declin
zero in the long run. In addition, there may be one interior steady state,u,
wherey is given byu = ((1+r1)%(p*? 4 02))/2yp*o?. Interestingly, it turns out
thatthe interior steady state is unstable and the long run equilibrium depends ol
current population state relative to the interior steady state. To see this, note tt
the current noise trader share is below the interior steady stat®; {t¢.< w«, then
the expected return differential is always negative and, as a result, the popula
share of the noise traders will decline to zero in the long run. On the other han
the current noise trader share is above the interior steady state;(te> u«, then
the expected return differential is always positive and the population share of
noise traders will increase to one. Such a dichotomy of long-run equilibria impl
that the unique interior steady state itself is asymptotically unstable. Theorem
summarizes the dynamic equilibrium result as follows:

THEOREM2.1. In our dynamic playing-the-field contest without fundament:
risk, the resulting population dynamic is given({B0). Given the interior steady
state u, the equilibria of the dynamic have three categories depending on t
average sentiment* and the noise trader riskpz.

(I) If noise traders on average have negative sentirfeht< 0), then ratio-
nal traders as a group will dominate the economy in the long run.

(I If noise trader risk is small or if average investor sentiment is positiv
but not moderatethen rational traders as a group will dominate the economy i
the long run.
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(I 1If noise traderriskis large and if average investor sentimentis modgerat
then rational(nonrationa) traders as a group will dominate the economy in the
long run when the initial population share of the nonrational tradexg(0), is
below(abovg the threshold level.

Figure 3 illustrates the evolution of the population share of the noise traders

a group according to Theorem 2.1 under each of the three categories. The intui
of Theorem 2.1 is as follows. In category |, noise traders with a negative aver:
sentimentp* < 0, tend to hold less of the undervalued risky asset and, as a res
lose money to the rational traders who hold more of the risky asset. In categ
Il with positive average sentimeng;” > 0, consider an extreme case where the
noise trader risk is negligible relative to the average sentiment suclﬁ%thato.
In this special case with neither fundamental risk nor, effectively, noise trader ri
the noise traders who overestimate the expected future price of the risky a
will trade extremely large quantity and, as a result, lose arbitrarily large profits
trading against rational traders with unlimited arbitrage.

Category lll corresponds to the case where noise traders have positive sentir
and the noise trader riskr,f, is relatively large. With a positive sentiment, noise
traders tend to hold more of the risky asset and consequently push up the pric
the risky asset (see Eq. (23).) On the other hand, the large noise trader risk te
to trim noise traders’ aggressive trading and hence eliminate some of the p

0 1
I ® & & S X,
0 1
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FIG. 3. The population dynamic under the playing-the-field contest without fundamental risk.
() limi= o X(t) = (1, 0) is the unique asymptotically stable equilibrium.
(1) lim¢—~ X(t) = (1, 0) is the unique asymptotically stable equilibrium.
1,0) if x2(0) € [0, w);
(1) lim o (1) = 1.0 ! 2(0) € [0, p)
(0. 1) if x2(0) € (1. 1].

X2 is the population share of the group of type-2 (i.e., nonrational) traders.



158 F. ALBERT WANG

pressure. Such a price reduction effect increases with the presence of noise tr:
(see Eq. (23).) Therefore, if the presence of the noise traders is large eno
i.e.,xo(t) > u, then the noise traders’ moderately aggressive trading will gener
greater returns than the rational traders do. On the other hand, if the presenc
the noise traders is not large enough, e(t) < u, then rational traders are more
willing to bet against the noise traders’ misperception and, as a result, exploit prc
from it. Note that DSSW'’s (1990) long run dynamic without fundamental risk
essentially the same as our category I, while our categories | and Il are abse

B. Dynamic Playing-The-Field Contest with Fundamental Risk

In this section, we analyze the dynamic equilibrium under the general case v
fundamentalrisk, i.eg? # 0. Solvingxy(t) = 0 for the population dynamicin (29)
yields the steady states of the population dynamic. The statesO andx, = 1
are always stationary in the dynamic. The long run equilibria of the populati
dynamic depend critically on the expected return differential in (29). If noise trad
have negative average sentiment, jé.< 0, then the expected return differential
is negative for alk(t). This means that starting from any nonstationary states t
population share of the noise traders will decline to zero in the long run. On
other hand, if noise traders have positive average sentiment in the economy,
p* > 0, then for some parameter values the expected return differential is posi
for all x(t). In this case, starting from any nonstationary states the population st
of the noise traders will increase to one in the long run. The third possibility
that for some parameter values the expected return differential is zero. In this c
the dynamic may have at most two interior steady states, denoted byd iy,
respectively, as follows,

* * 2 *
@007 +p7?) - (1+r)\/(1+r)2(a§+p 2)" — 16y20202p*?
B dyolp*

3

mL

(31)

* * 2 *,
@+ (o7+p7?) + (1+r)\/(1+r)2(ag+p 2)" — 16y20202p*?
B 4yo2p*

HH

3

(32)

provided that the expression inside the square roots in (31) and (32) is nonnega
Following the standard analysis of the dynamic equilibrium in the correspondi
evolutionary game (see the Appendix for detail), we obtain the asymptotice
stable equilibria for the dynamic in (29) as shown in Theorem 2.2. below:

THEOREM2.2. In our dynamic playing-the-field contest with fundamental ris}
the resulting population dynamic is given (29). Given the two interior steady
statesu| and uy from (31) and(32), respectivelythe long run equilibria of the
dynamic have four categories.
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() Ifnoise traders on average have negative sentipten rational traders
as a group will dominate the economy in the long run.

(I If noise traders on average have positive sentiment and they alwe
earns higher expected returns than do the rational tragezgardless of the cur-
rent population share distributiqrthen the noise traders as a group will dominate
the economy in the long run.

(1) If noise traders on average have positive sentiment and there exist
unique interior steady statél — 1., 1), then both rational and noise traders
will survive in the long run such that their population share distribution approache
the unique interior steady state.

(IV) If noise traders on average have positive sentiment and there ex
two interior steady stateq1 — ., 1) and (1 — uy, ny), then there are two
possibilities depending on the initial population share of the noise trades€0).

(i) If the noise tradersinitial population share is below, then both
rational and noise traders will survive such that the population share distributio
approaches the lower interior steady stafgé:— |, wp).

(ii) If the noise tradersinitial population share is abovey, then the
noise traders as a group will dominate the economy in the long run.

Figure 4 illustrates the evolution of the population share of the noise traders
a group according to Theorem 2.2. The theorem suggests that noise traders
ish in the long run if their average sentiment is bearish, p& < 0 (category I);
otherwise, they always survive under positive sentiment, p&x 0. Further-
more, noise traders dominate the markets if they always earn higher expet
returns than do rational traders, i.E[R,(x(t))] — E[R1(x(t))] > O (category II).

In category lll, starting from any nonstationary states, k&) ¢ {(1, 0), (O, 1)},
the population share distribution will converge to the unique asymptotically stal
interior equilibrium, (1— w, ), where both rational and noise traders survive
in the long run. Category IV has two interior steady states. Noise traders domir
if their initial population share is greater than the higher interior state oth-
erwise, they survive along with rational traders in the long run as the populati
share distribution converges to the unique asymptotically stable interior equil
rium, (1— wp, ur). DSSW (1990) obtain similar results regarding the surviva
of noise traders based on an imitation process where the wealth of trader is |
fixed. In fact, DSSW'’s long run dynamic with fundamental risk is essentially tf
same as category IV, while the results for other categories are absent. There
our finding in Theorem 2.2 extends DSSW (1990) by showing that the survival
noise traders is justified even if the wealth accumulation process is endogeno
determined.

Theorem 2.2 shows that the categorization depends on the average sentil
parameterp*, and the values of the two interior states, and uy. Hence, we
may determine the exogenous parameter space for each category according t
values of these parameters. The parameter space for category | is straightfor
to obtain, since it consists of all cases with negative average sentimenpt; i€ 0.
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FIG. 4. The population dynamic under the playing-the-field contest with fundamental risk.

() limi—co X(t) = (1, 0) is the unique asymptotically stable equilibrium.

(1) lim{- s X(t) = (0, 1) is the unique asymptotically stable equilibrium.

(y im0 X(t) = (L — p, ) is the unique asymptotically stable equilibrium.
(I—pe.n)  ifx(0) € [0, un);
©,1) if x2(0) € (i, 1].

X2 is the population share of the group of type-2 (i.e., nonrational) traders.

(IV) lim o0 X(t) =

But, obtaining the respective parameter spaces for categories Il to IV is difficult.
simplify the matter, define a normalized measure of the average investor sentir
by ¢ = p*/o,, aratio of the fundamental to noise trader riskfoy= o, /o, and a
constant = 4yp*/(1+ r). Rewrite the expressions of the two interior staigs
anduy in (31) and (32) as follows:

1+ 1+
uL = Tr(lwz ~JO).  un= Tr(lwz +v@. and
g =(1+¢)? - y22. (33)

Obviously, the two interior stateg anduy existonlyifg > 0. Inorderto focus
on the effects of the average investor sentimgrand the ratio of the fundamental
to noise trader risky, fix the constant = 3 and the risk-free rate = 0.05. We
can identify the set of the two parametegs {) in Rﬁ that gives rise to each
category, respectively, as# {(¢, ¥) € R2 | g <0, org > Oandu, > 1}, lll =
{(p, V) € Ri |g>0andO< u. <1< up}, and IV = {(p, ¥) € Ri lg>0
and O< u. < un < 1}. Theresult is illustrated in Fig. 5 where tige— ¢ space
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FIG.5. The categories of the equilibria under positive sentiment.

(II) Nonrational traders dominate rational traders in the long run.

(1) Both rational and nonrational traders survive in the long run.

(IV) Nonrational traders dominate if their wealth share is large enough; otherwise, both type:
of traders survive in the long run.

* Category | corresponds to the case with negative sentimentY(i-e.0) and hence is not shown.

is normalized intoX — Y space so that the entire univerBé can be shown in the
finite space [02] x [0, 2].

Figure 5 suggests that bullish noise traders dominate the economy only wi|
the fundamental risk is not too small relative to the noise trader riski.es,
o./0, > 0, and their positive sentiment,= p*/o,, is not too extreme (category
II). The intuition is as follows. A relatively large fundamental risk will deter
rational traders’ ability and willingness to trade against the mistake of noise trade
A modest positive sentiment allows noise traders to hold more of the risky as
without causing too much undesirable price impact. As a result, moderately bull
noise traders tend to generate higher expected returns than do the rational tra
particularly when the fundamental risk is large. This implies that in the lar
economy these modest noise traders as a group will accumulate wealth at a hi
speed than will the rational traders. As a result, the noise traders will eventus
dominate the market in the long run as their population share increases to ¢
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On the other hand, if the fundamental risk is small relative to the noise trader |
and the positive sentiment is excessive, then the resulting adverse price im
may be large enough to cancel out the benefit of the positive sentiment. In
case, such bullish noise traders tend to survive but not dominate (category
Last, if both the positive sentiment and the fundamental risk are small (ce
gory 1V), then the noise traders as a group either dominate or survive in the I
run, depending on their initial population share relative to the higher interior ste
H, as described in Theorem 2.2.

IV. DISCUSSION OF ANALYSIS INCLUDING
EMPIRICAL IMPLICATIONS

In this section, we discuss the implications and generalization of our theoret
analysis. Itis worth noting first that, unlike the usual biological population proce
we do not obtain the population dynamic simply by assuming some fitness criter
e.g., recent profits or expected utility, for the determination of the growth of ec
type of trader. Instead, following Blume and Easley (1992), we take the vit
that there is a natural population dynamic in asset markets that emerges from
process of wealth accumulation. In this process, the endogenously determ
growth rate of wealth accumulation governs the relative fithess of each type
trader in the market. As a result, this dynamic does not depend on individ
adaptation as required in the usual learning—imitation process. For example, |
DSSW (1990) and Hirshleifer and Luo (2001) assume recent profitability to be
fitness criterion in their imitation processes, whereas Palomino (1996) assu
expected utility as the fitness criterion in his adopted imitation process. Thus,
endogenously determined group wealth accumulation process distinguishes
model from these other models.

The population dynamic in this paper depicts the growth of the wealth of t
group, not of individual traders. In fact, the survival of the group of nonrational i
vestors is, to some extent, at the expense of the individual investors. This hapj
because irrationality (overconfidence or investor sentiment) induces individ
traders to trade more aggressively and, as a result, they have a higher expt
return as well as a higher variance than rational traders do. This means that i
vidual nonrational investors tend to have a higher probability of going bankrt
than do individual rational investors. In this sense, individual nonrational invest
may be subject to the gambler’s ruin problem (Samuelson (1971, 1977)). In 1
paper, however, we show that in a large economy where the high variance ris
diversified in the group wealth portfolio, the resulting population dynamic is drive
primarily by the expected return differential between the two groups. Therefo
the gambler’s ruin problem at the individual level does not prevent the survival
nonrational investors as a group.

What happens then for a small economy where the high variance risk car
be diversified away? In this case, there is a nonlinear (concave) relation betw



OVERCONFIDENCE SENTIMENT, AND EVOLUTION 163

return and population growth. Palomino (1996) examines this case and finds |
spiteful noise traders can hurt rational investors more than themselves. As are
even with the high variance risk, the noise traders can still dominate the mar
if they are moderately over-optimistic and if the fundamental risk is relative
large. Remarkably, the condition for the survival of noise traders in a small ecc
omy is essentially the same as the condition obtained in our model under a Iz
economy. This invariance result highlights that our main conclusion—moderat:
nonrational investors can dominate the market, particularly when the fundam
tal risk is large—is robust to a nonlinear (concave) relation between return &
population growth.

Overconfidence acts like a commitment device to aggressive trading in our p
wise contest, but the commitment device effect does not require that overconfic
traders move first. In fact, at the beginning of each contest a trader does not ki
which type of the other trader, rational or nonrational, he or she is going to fa
There are four possible type combinations of the two traders and the proba
ity of each combination is governed by the population distribution at that tim
The duopoly model of Kyle and Wang (1997) does not require that overconfids
traders move first either. In fact, Kyle and Wang show that if a rational trad
moves first, then a moderately overconfident trader will not only outperform t
first-move rational trader, but also do better than if he or she were also ratior
On the other hand, if an overconfident trader moves first, then the second mov
better off being overconfident than being rational. This leads to a Nash equilibrit
in which both traders are overconfident. This equilibrium is a prisoner’s dilemr
in which both traders make less profits than if they both were rational. This Na
equilibrium outcome generalizes the special case of a single overconfident ins
as in Odean (1998).

In our evolutionary model once investors are born to be a certain type (rationa
nonrational), they are “programmed” to their type in the evolutionary game. O
might argue that overconfident investors should learn over time to change tt
erroneous belief and eventually converge to the rational belief. Empirical evider
in psychology literature (Kahnemaal.(1982)) shows that people do not update
their beliefs rationally. For example, Daniel al. (1998) consider an updating
rule based on biased self-attribution—a rule by which investors essentially beli
“heads | win, tails it's chance” (Langer and Roth (1975) and Gervais and Ode
(2001)). In such a biased learning process, overconfident beliefs need not conv
to rational beliefs.

The most interesting empirical implication of our analysis lies in the area
fund management. Under the view of the efficient market hypothesis, all ass
are efficiently priced and hence it is optimal to invest passively in the index fur
One can view, therefore, these passive fund managers as the rational traders i
market. On the other hand, fund managers, who are overconfident about their
vate information or too optimistic about the future prospect of the asset value, te
to disagree with the market efficiency hypothesis and trade actively and agg!
sively in the market. In other words, these active fund managers tend to mani
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themselves as the nonrational traders in the market. In this context, our anal
of the survival issue provides several new empirical implications for the survi\
of active fund management. First, although individual active fund managers tr
more aggressively and hence die faster than individual passive fund managers
active fund management style (i.e., the “group”) can still persist in the mark
e.g., Fidelity investment group versus Vanguard investment group.

Second, the group of active fund managers survives better in a market with t
fundamental risk. This means that active fund management should be more poy
in the market where the fundamental value of assets is more difficult to assess.
leads to several testable implications. For example, active fund management sh
be more popular in high-risk funds than in low-risk funds. Similarly, active fun
management should be more popular in the stock market than in the bond me
and more popular in emerging markets than in the U.S. market, etc. Finally, wi
individual active fund managers may display various degrees of overconfide
or investor sentiment, the surviving active fund managers should exhibit model
aggressiveness, rather than extreme aggressiveness.

Although in this paper we focus on the survival of nonrational investors in as
markets, our key finding that moderately aggressive, nonrational agents can
hance their survivability seems to have broader applications in other economic
tings. For example, Bernardo and Welch (2000) examine a model of informatio
cascades and find that overconfident entrepreneurs, who overweigh their pri
information, can better convey valuable information to the group and hence av
the bad herding equilibrium. Goel and Thakor (2000) consider a model of leac
ship and show that the overconfident manager, who understimates his or her pr
risk, has a greater chance to be chosen as the leader (CEQ) than an otherwise
tical rational manager. This is so because the race to CEO is like a winner-take
game, in which only the extreme positive performance will be awarded.

V. CONCLUSION

We examine the long run survival of nonrational traders in a dynamic, evo
tionary model. Specifically, we develop a general population dynamic for a lal
economy with rational and nonrational traders according to the process of we
accumulation in asset markets. The dynamic indicates that the growth rate
wealth accumulation drives the evolutionary process in asset markets. This
dogenously determined group wealth accumulation process distinguishes our
lutionary model from the previous models with exogenous imitation processe:s

We apply our population dynamic to examine the survival of overconfide
traders in a pairwise contest and the survival of noise traders in a playing-the-f
contest. We find that neither underconfident nor bearish sentiment can sun
On the other hand, investors with moderate overconfidence or bullish sentin
can survive in the long run. Furthermore, these moderately aggressive inves
may dominate the market if fundamental risk in the market is sufficiently larg
These findings provide interesting new empirical implications for the survivabili
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of active fund management. Overall, our results lend support to the relevance
the psychology of investors with respect to either overconfidence or sentiment
the study of financial markets.

APPENDIX

To facilitate our proofs in what follows, some equilibrium concepts of the dy
namic are in order. Say that a statee A = {x(t) Ri | X1(t) + %o(t) =1} is a
dynamic equilibrium (a.k.asteady statefor the dynamicx(t), if X(t)lxg)=x- = 0.
Such states are steady in thet) = x* for all t € [0, o) iff X(0)Ix©o)j=x- = 0.
Say that a dynamic equilibrium* € A is asymptotically stabléf it has some
open neighborhoodl (x*) such that liny, . x(t) = x*, if the initial statex(0)
N(x*) N A. Intuitively, the asymptotic stability requires a local pull toward the
steady state following a small perturbation, and hence all states near a dyna
equilibrium will eventually evolve toward it.

Proof of theorem 1. Note that the homogenous profiles (1, 0) and (0, 1
are always steady states for the dynamic in (18) and the heterogeneous pr
(a2/(a1 + &), a1 /(a1 + a&p)) is an interior steady state if the two return parame
ters,a; anda,, have the same signs. To check the asymptotic stability, differentic
the dynamicx, in (18) with respect tx, and evaluate the partial derivative at eack
steady state, respectively, as follows:

X2

T —3(ay + a)x5 + 2(2a; + ax)x2 — ay; (A1)
2

X X X aa

972 = —a, 772 = —ap, and e = Cha . (AZ)
8X2 Xo=0 8X2 Xo=1 axz X2=_ala+laz ar+a

A steady state is asymptotically stable iff the partial derivative evaluated at that s
is negative. By (A2), the following results are obtained: (1, 0) is asymptotical
stable ifa; > 0; (0, 1) is asymptotically stable i, > 0; (ay/(a; + a2), a1 /(a; +
ap)) is asymptotically stable &y < O anda, < 0. =

The results of the proof of theorem 1 are summarized as follows:

() If a; > 0 anda; < 0, then &q, X2) = (1, 0) is the unique asymptotically
stable equilibrium.

(I If a3 < 0anda, > 0, then &, x2) = (0, 1) is the unique asymptotically
stable equilibrium.

(i If a3 > 0 anda, > 0, then there exist two asymptotically stable equi
libria such that

’ a1+a2)

(1.0) ifxx(0)e [0
lim x(t) = 1]

t—o0 0,1)  if x(0) e (2

ap + a’
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(V) If a1 < Oanda; < 0,thenkq, x2) = (az/(a1 + a2), a1/(a1 + ap)) isthe
unique asymptotically stable equilibrium.

Proof of theorem 2.1. By (30), if p* <0 or 0< p* < (L +r)%(p*? + apz))/
(2ya§), then we haveE[Ry(x(t))] — E[Ri(x(t))] < O for ¥x(t) € A = {x(t) €
R2 | xa(t) + Xo(t) = 1}. To derive the parameter space for the second case, re
range and write a quadratic functidrfp*) as follows:

2)/(7}02

*Y k2
f(p*)=p )

50"+ 03. (A3)

A simple calculation shows that the function is greater than zero (and hel
E[Rx(x(t))] — E[R1(x(t))] < 0) if either o, < (1+7r)?/y or p* e (0, p*)U
(0}, 00), where

. 1 2yap2 2yo? 2
=2 ((1+r)2 } \/<(1+r>2> _4"5) and
. 1 2y0? 2y02 \?
A (<1+rp)2 +\/<(1+rp>2) _403) | 0

Given thatE[ Ro(x(1))] — E[Rw(x(t))] < O, starting from any nonstationary states
the population share of noise traders will decline to zero in the long run. Thus,
unique asymptotically stable equilibrium i ( x,) = (1, 0).

On the other hand, i, > (1+r)?/y andp* € (o*, p%), then the function
f(p*) is less than zero, and hence the dynamic in (30) may have one inte
steady statexq, x») = (1 — u, ), whereuw is given by = ((1 4 r)?(o*? + apz))/
(2)/,0*03). Inthis case, the expected return differenti#IR,(x(t))] — E[ Ru(x(t))],
depends on the current population share relative to the interior steady state. |
current noise trader share is below the interior steady statexd(€),< w, then
the expected return differential is negative and the population share of the ni
traders will decline to zero in the long run. If the current noise trader share
above the interior steady state, ixe(t) > u, then the expected return differential
is positive and the population share of the noise traders will increase to one. Tl
we obtain two asymptotically stable equilibria, (1, 0) and (0, 1), respectivay.

The results of the proof of theorem 2.1 are summarized as follows:

() If p* < 0, then &;, X2) = (1, 0) is the unique asymptotically stable equi-
librium.

() If o, < (L+71)2/y or p* € (0, p*) U (p%, o0), then &, x2) = (1, 0) is
the unique asymptotically stable equilibrium.
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(I If o, > (1+r)?/y andp* € (p*, p3), then there exist one unique in-
terior steady state (2 u«, 1) and two asymptotically stable equilibria such that

_ {(1, 0) if x2(0) € [0, p);
lim x(t) =
t—o00 (O’ 1) if XZ(O) S (Mv 1]

Proof of theorem 2.2. By (29), p* < 0 = E[Rx(X(t))] — E[Rs(x(t))] < O for
VX(t) € A = {x(t) € R | x(t) + Xo(t) = 1}. Hence, the dynamic in (29) only has
two steady states: (1, 0) and (0, 1). To check the asymptotic stability, differenti
the dynamicx, in (29) with respect tx; and evaluate the partial derivative at eack
steady state, respectively, as follows (ignoring the constamt Without loss of
generality):

X
— = p*; A5
X2 Xo=0 ( )
X . p*?+o? ~ «
ool =P s = E[Run(0. ] - E[Ren(0. 1) (A6)
2 |xo=1 2y (m + %2)

A steady state is asymptotically stable iff the partial derivative evaluated at that s
is negative. Hencg(t) = (1, 0) is the unique asymptotically stable equilibrium in
category | in whichp* < 0.

In category Il (i.e.p* > 0 andE[Rx(X(t))] — E[R1(x(t))] > Oforvx(t) € A),
the dynamic again has two steady states: (1, 0) and (0, 1). Givesitha0, x(t) =
(1, 0) is not asymptotically stable by (A5). On the other hand, (0, 1) is asympto
cally stable iffE[R,(0, 1)] — E[R1(0, 1)] > 0 by (A6). This always holds in cat-
egory Il by its definition. Hencex(t) = (0, 1) is the unique asymptotically stable
equilibrium.

If p* > 0andg > 0, thenE[Ry(x(t))] — E[Ry(x(t))] = 0 may have at mosttwo
realrootsy. anduy, asdefinedin (31) and (32), for somg) € A\{(1, 0), (O, 1)}.
By definition, a positive real root is an interior steady state if it is bounded abo
by one. Hence, there are two possibilities for the existence of the interior stat
(1) the lower rootu, is the unique interior steady state in category Il fox0
uL <1< uy, and (2) both rootg. anduy are interior steady states in cate-
gory IV for 0 < u. < un < 1. To check the asymptotic stability for the interior
steady states, compute

o2 082
%o it 1) (p*? + o) (m - F)

X . 2 o2 2
S 2 (i + )

, wherej =L, H. (A7)

Equation (A7) indicates that an interior steady stateis negative iffu; <
(1+4r)o./o,, | =L, H. Given the existence of the two real roots, i@ 0,
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(31) and (32) imply the following two inequalities:

(1+r),/16y%0202p*? 14r
GG Ch )iy (8)

ML <
dyo2p* o,

R e B A G A AL ¢ a0 (A9)
4yo2p* 4yo2p* o,

By (A7)—(A9), the lower roofu, is asymptotically stable, but the higher rqof

is not. Note that (0, 1) is asymptotically stable B R»(0, 1)] — E[R1(0, 1)] > 0

by (AB). Note also thaE[Rx(x(t))] — E[Ru(x(t))] is a convex function, given
p* > 0. Thus, a simple inspection of the convex functionxg(t) € [0, 1] shows
that (1) E[R2(0, 1)] — E[Ry(O, 1)] < 0 if there exists only one interior steady
state, (category lll) and (2)E[R(0, 1)] — E[R4(0, 1)] > O if there exist two
interior steady states (category V). Hencgt) = (0, 1) is an asymptotically
stable equilibrium in category IV, but not in category lll. Finally, given tha
o* > 0,x(t) = (1, 0) is not asymptotically stable in either category Il or IV by
(A5). Therefore, we obtain the desired results in Theorems®.

The results of the proof of theorem 2.2 are summarized as follows:

(N If p* <0, then &1, x2) = (1, 0) is the unique asymptotically stable equi-
librium.

(1) If p* > 0 andE[Rx(x(t))] — E[R1(x(t))] > O for Vx(t) € A = {x(t) €
R2 | xa(t) + Xo(t) = 1}, then &, x2) = (0, 1) is the unique asymptotically stable
equilibrium.

(m 1f p*>0and O< up <1 < uy, then &g, x2) = (L — ., uL) is the
unique asymptotically stable equilibrium.

(IV) If p* >0and 0< u. < un < 1, then there exist two asymptotically
stable equilibria such that

(L= pr, ) if x2(0) € [0, pn);
lim x(t) = _
t=oo 0,1) if X2(0) € (un, 1.
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