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We examine the survival of nonrational investors in an evolutionary game model with
a population dynamic for a large economy. The dynamic indicates that the growth rate of
wealth accumulation drives the evolutionary process. We focus our analysis on the sur-
vival of overconfidence and investor sentiment. We find that underconfidence or pessimism
cannot survive, but moderate overconfidence or optimism can survive and even dominate,
particularly when the fundamental risk is large. These findings provide new empirical im-
plications for the survivability of active fund management. Our results lend support to the
relevance of the psychology of investors in studying financial markets.Journal of Economic
LiteratureClassification Numbers: G10, G14.C© 2001 Academic Press
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In recent years, there has been a growing interest in studying the behavior and
effects of nonrational investors, who misperceive the distribution of asset values, in
financial markets. In these studies, there is an implicit assumption that nonrational
investors are relevant and even critical for the study of financial markets. There
are, however, two opposing views on the relevance of this issue in the literature.
On the one hand, Black (1986) argues that if all investors are rational and perceive
their information correctly, then there will be very little trading in individual assets
since it is in the interest of informed traders not to trade with each other (see also
Milgrom and Stokey (1982)). Furthermore, if there is little trading and liquidity in
individual assets, then it will be difficult to price index funds and derivative assets.

1 This paper is a significantly revised and retitled version of my earlier working paper, “Overconfi-
dence, Deligated Fund Management, and Survival.” I thank Nick Barberis, Jeff Fleming, Jim Friedman,
Simon Gervais, Pete Kyle, Robert Shiller, Andrei Shleifer, Anjan Thakor (the editor), Richard Thaler,
two anonymous referees, and the seminar participants at the 1997 NBER Behavioral Finance Program
Meeting, the 1997 and 1998 Western Finance Meetings, the Fourth Annual Conference of the Chicago
Quantitative Alliance, IMF, and Rice University for helpful discussions and comments. The usual
caveat applies.
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Therefore, the entire financial market cannot function properly without liquidity in
individual assets. Black then posits that noise traders, who misperceive their noise
as information, provide the necessary liquidity to the market. As a result, informed
traders now have incentive to trade and their information is thus incorporated into
prices. In essence, the whole structure of financial markets depends on the very
presence of these noise traders. On the other hand, Friedman (1953) argues that
nonrational investors are irrelevant because they will be driven out of the market
by rational investors eventually in the process of natural selection. In this paper,
we draw a line between the two opposing views by examining the viability of
nonrational investors and, in particular, the survival of overconfidence and investor
sentiment. If nonrational investors could not survive in the long run, then their
impact on asset prices and markets would be at best transient. On the other hand, if
nonrational investors could survive, it would then lend support to the relevance of
the psychology of investors in studying financial markets. Thus, the key question
we confront is whether nonrational investors can survive in the long run.

In order to examine the survival issue under a natural selection process, we
consider the approach of evolutionary game theory since it is designed to analyze
the survival of interactive agents in the evolutionary sense (Maynard Smith (1982)
and Friedman (1991)). In our model, the choice of rational or nonrational types
is formulated as a pure strategy in the evolutionary game. The evolution of the
population of investor type is essentially driven by the relative fitness of the two
strategies in terms of their current payoffs. In this context, we examine the long-
run steady state of the population distribution between rational and nonrational
investors in the market.

While the general evolutionary framework can apply to a variety of cases, we
focus on two common scenarios. In the first scenario, we consider pairwise con-
tests where every round of interaction involves two randomly matched individual
investors who play a bilateral game in normal form. This scenario captures the
strategic element in markets with imperfect competition. This setup is appropriate
for analyzing the kind of markets where there exist a few big players with signifi-
cant market power. In the second scenario, we examine playing-the-field contests
where a large number of investors interact jointly in the market and yet none of
them have market power. This scenario is relevant for studying the competitive
market where all investors are price takers. In this paper, we adopt the first scenario
to analyze the survival of overconfident traders with market power as described in
Kyle and Wang (1997) and the second scenario for the survival of noise traders
without market power as described in De Long, Shleifer, Summers, and Waldmann
(henceforth DSSW) (1990). Both Kyle and Wang (1997) and DSSW (1990) deal
with static models in which the population share is fixed, and hence the models are
inadequate to address the long-run survival issue. In this paper, we extend these
static models into evolutionary game models and examine the resulting population
dynamic of nonrational traders according to their relative fitness in the game.

The population dynamic that emerges from the two models yields remark-
ably similar results regarding the survival of nonrational traders as a group. First,



140 F. ALBERT WANG

nonrational traders with negative sentiment will never survive in the long run. This
applies to underconfidence in Kyle and Wang (1997) and to bearishness in DSSW
(1990). Second, nonrational traders with extremely positive sentiment may not
survive either. This applies to excessive overconfidence in Kyle and Wang (1997)
and to excessive bullishness in DSSW (1990). Third, nonrational traders with
moderately positive sentiment tend to dominate the market, particularly when the
variance of the risky asset’s value (which we call the ”fundamental” risk) is large.

Note that aggressive trading tends to create a large price impact. Moderate sen-
timent and large fundamental risk both serve to reduce the adverse price impact.
As a result, individual nonrational traders may bankrupt sooner than individual
rational traders because of the price risk (Samuelson (1971, 1977)). But, nonra-
tional traders as a group with a higher expected return can still accumulate wealth
at a higher speed than rational traders and hence increase in population. It is in
this spirit that we demonstrate the survival of nonrational traders as a group, rather
than as individuals.

It is important to note that the economic rationale for the survival of overconfi-
dence in Kyle and Wang (1997) is different from that for the survival of the bullish
sentiment in DSSW (1990). In the latter case, the bullish sentiment causes noise
traders to hold more of the risky asset than their rational opponents, thus gaining a
higher expected return. In the former case, however, there is no such risk premium,
given that all traders are assumed to be risk neutral. Instead, overconfidence leads
investors to buy more of the asset when the traders receive good signals and to sell
more of the asset with bad signals. As a result, the demand differential between the
overconfident traders and their rational opponents tends to be positively correlated
with the asset’s value, thus yielding a higher expected return to the overconfident
traders.

Some recent attempts addressing the survival issue include DSSW (1991),
Blume and Easley (1992), Palomino (1996), Wang (1998), and Hirshleifer and
Luo (2001). DSSW (1991) study the wealth accumulation process for traders, but
they assume the risky assets’ supplies to be infinitely elastic and the returns to
be exogenously given. As a result, while investors’ beliefs affect their demands
for risky assets, they do not affect the prices of the risky assets. This is in sharp
contrast to our model where both investors’ demands and the equilibrium price are
influenced by their beliefs.

Blume and Easley (1992) find that nonrational traders can survive better than ra-
tional traders if nonrational traders’ utility is closer to log-utility than their rational
opponents’. The survival of nonrational traders in this model is due to systematic
differences in utility functions. On the one hand, our results capture the same effect
of the utility-based argument in the sense that overconfidence and bullish sentiment
make nonrational traders trade more aggressively like log-utility traders. On the
other hand, the aggressiveness in our model comes from irrational beliefs, rather
than different utility functions. Essentially, our paper shows that given the same
utility functions, nonrational investors can still survive if their irrational beliefs
make them trade more aggressively in the right way.
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Moreover, in the case of overconfidence (Kyle and Wang (1997)), both rational
and nonrational traders are risk-neutral and hence both trade more aggressively
than log utility traders do, but still we show that moderate overconfident traders
can survive better than their rational opponents. Palomino (1996) finds that spiteful
noise traders may earn a higher expected utility than their rational opponents do and
eventually dominate the market. In contrast, our model does not assume spiteful
behavior for nonrational investors.

Wang (1998) extends Kyle (1985) by incorporating overconfidence into the dy-
namic model of insider trading. He shows that the overconfident insider trades more
aggressively than he or she would if he or she were rational. In anticipating such
aggressive informed trading, market makers reduce liquidity. This, in turn, gener-
ates greater profits for the overconfident insider at the expense the liquidity traders.
This result implies that overconfidence can help a monopolistic insider amass even
greater wealth and power, thus strengthening his or her dominance in the market.

Hirshleifer and Luo (2001) consider a population dynamic based on imitation of
the recent profit in a competitive market. They find that risk-averse overconfident
traders take on more risk and hence earn higher profits than rational traders do.
Both Wang (1998) and our paper show that overconfident traders can still make
higher profits without such a risk premium and eventually come to dominate the
market.

Most important, while our survival analysis is much in the spirit of the previ-
ous literature, this paper takes a further step forward by explicitly modeling the
wealth accumulation process that emerges from the market competition between
the group of rational investors and the group of nonrational investors in a large
economy. As a result, the population dynamic examined in this paper does not
depend on individual adaptation as has often been assumed in previous literature.
The endogenously determined group wealth accumulation process thereby distin-
guishes the current paper from much of the previous literature with exogenous
imitation processes.

The plan of this paper is as follows. Section I develops a general population
dynamic between rational and nonrational traders in a large economy. The popula-
tion dynamic conforms to the replicator dynamic in a standard evolutionary game.
Section II examines the survival of overconfidence in a pairwise contest based on
the trading mechanism in Kyle and Wang (1997). Section III examines the survival
of investor sentiment in a playing-the-field contest based on the trading mecha-
nism in DSSW (1990). Section IV discusses the robustness and implications of
our models and analysis. Section V concludes. All proofs are in the Appendix.

I. POPULATION DYNAMIC IN ASSET MARKETS

A. The General Framework

Consider a large population of individual traders who have two strategies (or
phenotypes) available: rational strategy (type-1) and nonrational strategy (type-2).
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At any timet, letMi (t) be the number of individual traders who adopt strategy (type)
i ∈ {1, 2}. The associated population profile is therefore defined as the ordered
pair x(t) = (x1(t), x2(t)), wherexi (t) = Mi (t)/(M1(t)+ M2(t)) is the population
share of type-i traders. The population statex(t) is thus identified with a mixed-
strategy in the associated strategy simplex1 such thatx(t) ∈ 1 = {x(t) ∈ R2

+ |
x1(t)+ x2(t) = 1}. Each strategy induces a payoff for the individual trader who
adopts it, given the strategy profile of the rest of the population. Let the payoff to
any pure strategyi ∈ {1, 2}, given the population statex(t), be denoted asu(i, x(t)).
The average payoff to an individual trader drawn at random from the population
is thus given byu(x(t), x(t)) =∑2

i=1 xi (t) · u(i, x(t)).
Following the approach in evolutionary games, let current payoffs be the de-

termining factor for the relative fitness of different strategies and, as a result,
drive the evolution of their corresponding population shares. In other words, cur-
rent payoffs from trading activities represent the incremental effect on the fit-
ness of different types, measured as the number of each type of trader. All other
factors that are independent of the current payoffs affect only the absolute fit-
ness of each type, but not the relative fitness of different strategies. Let the net
birthrateκ at any timet represent these other factors as background fitness inde-
pendent of the current payoffs and let the population of traders evolve continu-
ously over time. This setup results in the following population dynamic for type-i
traders,

Ṁi (t) = [κ + u(i, x(t))] Mi (t), (1)

where Ṁi (t) is the instantaneous rate of the change in the population of type-i
traders at timet . The corresponding dynamic for the population share of type-i
tradersxi (t) is straightforward to calculate and obtained as follows:

ẋi (t) = [u(i, x(t))− u(x(t), x(t))] xi (t). (2)

This dynamic implies that the type of traders associated with better-than-average
payoffs increases, while the type associated with worse-than-average payoffs de-
creases in the process of evolution. As expected, this dynamic is independent of
the common background fitness measure, i.e., net birthrateκ. It is worth nothing
that the dynamic exhibits the same form of the usual replicator dynamic (Taylor
and Jonker (1978)) in evolutionary games. So far, we derive a general population
dynamic without specifying a particular payoff function. Clearly, the dynamic de-
pends on the choice of the payoff function, which in turn depends on the asset
market in question. In Section B, we show that in a large economy the investment
return of each strategy (type) emerges as the strategy’s (type’s) payoff function for
the population dynamic in the process of wealth accumulation.
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B. The Population Dynamic in a Large Economy

Consider a large economy with a sufficiently large number of risky asset mar-
kets,N. In each periodt (t = 1, 2, . . .), the N risky assets’ returns, denoted by
r̃1, r̃2, . . . , r̃ N , are independently and identically distributed across markets. Each
asset marketn (n = 1, 2, . . . , N) has two types of traders, denoted byi = 1, 2.
Type-1 traders are those who have correct beliefs about the distributions of risky
assetsn in the market, whereas type-2 traders are those who misperceive the distri-
butions of the risky asset due to cognitive errors (Kahnemanet al. (1982)). In this
sense, type-1 traders are rational and type-2 traders are nonrational. All traders are
endowed with a constant capitalc0 at the beginning of each period and may borrow
or lend at a nonnegative riskfree rater. In each period, individual type-i traders
in asset marketn choose their optimal demandqi,n for risky assetn to maximize
their expected utility of the end-of-period wealth, given the current market price
pn and their beliefs and information. At the end of the period, assetn’s returnrn is
realized and the type-i trader’s investment return, denoted byRi,n, is given by

Ri,n = αi,nrn + (1− αi,n)r, whereαi,n = pnqi,n

c0
is the weight in risky

assetn for the type-i trader. (3)

The end-of-period wealth of type-i traders as a group is the sum of the realized
end-of-period wealth of all individual type-i traders acrossn markets. Letwi (t) ≡
c0 · Mi (t) be the wealth of type-i traders as a group at the beginning of periodt.
The population share of the type-i traders as a group in periodt, xi (t), is therefore
determined by its wealth share at timet, xi (t) = wi (t)/(w1(t)+ w2(t)), for i = 1,
2. This captures the notion that the more wealth a group has the more populous that
group becomes. The distinction between wealth,wi (t), and population share,xi (t),
is important because a group of traders can have positive wealth and yet become
extinct in terms of its population share, when the group’s speed of accumulating
wealth is of a lower order relative to the other group. In order to emphasize the
dependence of individual traders’ returns on the population state, writeR̃i,n(x(t))
as the return of individual type-i traders in marketn, given the current population
statex(t). Similarly, write R̄i (x(t)) ≡∑N

n=1 bi,n R̃i,n(x(t)) as the average return of
type-i traders across markets in periodt, where the weightbi,n is the relative size
of type-i traders in marketn such that the weights across markets sum to one; i.e.,∑N

n=1 bi,n = 1. In other words, the average return obtained by a given trader type
depends not only on the return he or she achieves in each market,R̃i,n(x(t)), but
also on his or her relative size in each of those markets,bi,n.

The wealth of type-i traders as a group at the beginning of periodt + 1 is
therefore given by

wi (t + 1)= wi (t)[1+ R̄i (x(t))] = c0 · Mi (t + 1). (4)
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Now, consider a “smooth” continuous-time counterpart of the above discrete-
time wealth accumulation process such that at any fractionδ of the period, the
wealth of type-i traders as a group at timet + δ is given by

wi (t + δ) = wi (t)[1+ δ R̄i (x(t))], where 0≤ δ ≤ 1. (5)

Consequently, the population share of type-i traders as a group at timet + δ is
given by

xi (t + δ) = wi (t + δ)∑2
j=1w j (t + δ)

= xi (t)[1+ δ · R̄i (x(t))]∑2
j=1 xj (t)[1+ δ · R̄j (x(t))]

. (6)

The instantaneous rate of the change in population share at timet, denoted bẏxi (t),
is obtained as follows:

ẋi (t) ≡ lim
δ→0

xi (t + δ)− xi (t)

δ
= xi (t)(1− xi (t))[ R̄i (x(t))− R̄j (x(t))]

= xi (t)[ R̄i (x(t))− ¯̄R(x(t))], for i, j = 1, 2 and i 6= j, and

¯̄R(x(t)) ≡
2∑

i=1

xi (t) · R̄i (x(t)). (7)

This dynamic indicates that the growth rate,ẋi (t)/xi (t), of group i’s population
share equals the difference between the group’s average return across all markets,
R̄i (x(t)), and the population-share weighted average return of all traders in the
economy, ¯̄R(x(t)). This population dynamic emerges from the process of asset
accumulation and it shows that the investment return of different strategies (types)
drives the evolutionary process in asset markets. When compared to the dynamic in
(2), the dynamic in (7) indicates that the investment return of each strategy (type)
is the strategy’s (type’s) payoff function for the population dynamic. Intuitively,
this dynamic captures the spirit in real-world asset markets in the sense that the
rise and fall of investment funds depend on their relative return performance in
the markets (Lakonishoket al. (1992)). This process is also consistent with the
practice in real life in the sense that old investors die and new investors inherit
money and the strategies of their parent investors.

In general, the analysis of the stochastic process of the population dynamic in (7)
is complex, because the average investment return of type-i traders, i.e.,R̄i (x(t)),
depends on individual type-i traders’ return in each marketn, i.e.,R̃i,n(x(t)), which
is stochastic. However, if type-i traders’ size-adjusted returns, i.e.,bi,n R̃i,n(x(t)),
are independently distributed with finite variances across markets, then the aver-
age return of type-i traders across markets converges to the expected return of a
representative type-i trader, denoted byE[ R̃i (x(t))], as the number of markets,N,
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becomes sufficiently large (see Shiryayev (1984, p. 364)). That is,

R̄i (x(t)) ≡
N∑

n=1

bi,n R̃i,n(x(t))→ E[ R̃i (x(t))], asN →∞, for i = 1, 2.

(8)
Since we consider an economy where the number of markets is sufficiently large
and the risky assets’ returns are independently and identically distributed across
markets, the above convergence result in (8) naturally holds in our model. We drop
the subscriptn in the RHS of (8), since the expectations are identical for alln. In
such a large economy, the general population dynamic in (7) therefore becomes
the following:

ẋi (t) = xi (t)(1− xi (t))(E[ R̃i (x(t))] − E[ R̃j (x(t))]),

for i, j = 1, 2 and i 6= j . (9)

The population dynamic in (9) shows that in a large economy the instantaneous
rate of change in the population share depends on the current expected return dif-
ferential between the two types of traders, i.e.,E[ R̃i (x(t))] − E[ R̃j (x(t))], which,
in turn, depends on the current population state,x(t). In other words, the expected
returns depend on the current population state and, at the same time, the change
in the current population state depends on the expected returns. Such a dynamic
relationship is important in real-world markets, because although higher expected
returns tend to generate a greater population share, the greater population share
up to a certain level may hurt the expected returns in the future. Hence, it is
important to determine simultaneously the population shares and the expected
returns in a dynamic system as in (9). This is in contrast to the imitation pro-
cess of DSSW (1990) where the returns are calculated under the assumption that
the noise trader share is fixed. Moreover, our endogenously determined group
wealth accumulation process distinguishes our population dynamic from other
dynamics based on exogenously chosen individual imitation process as in DSSW
(1990).

So far, we develop the population dynamic between rational and nonrational
traders without specifying any particular kind of nonrational traders and show that
their survival depends on the relative fitness as measured by their current expected
return. In order to examine the survival of a particular kind of irrationality, one
needs to model the trading game between the two types of traders and derive
their corresponding payoffs, i.e., the expected returns, as a function of current
population state. This is what we turn to in the next two sections. Section II
examines the survival of overconfidence in a pairwise contest and Section III
examines the survival of investor sentiment in a playing-the-field contest.
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II. OVERCONFIDENCE IN A PAIRWISE CONTEST

In this section, we consider overconfident traders with market power in a
pairwise contest. Consider a large economy withN risky assets, whose values
ṽ1, ṽ2, . . . , ṽN are independently and identically distributed at the end of each
period. For simplicity, normalize the risk-free rater to zero. The economy is
populated with risk-neutral informed traders of two possible types: rational and
nonrational. At the beginning of each period, informed traders do not know which
type of the other informed traders they are going to face, since they have the
possibility of trading against rational and nonrational traders. Then, nature draws
randomly a pair of informed traders from the current distribution of the population
for each marketn (n = 1, 2, . . . , N), independently across allN markets. Thus,
in each market there are four possible type combinations of the two informed
traders thus drawn. Denote the possible type combinations by (in, jn) ∈ {(1, 1),
(1, 2), (2, 1), (2, 2)}, where (i n, jn) = (1, 2) means that the first informed trader
drawn in marketn is a type-1 (rational) trader and the second informed trader
is a type-2 (nonrational) trader, etc. The probability of each type-combination
drawn in each market is governed by the current population statex(t) = (x1(t),
x2(t)) in the large economy. Specifically, with probability (x1(t))2 the pair of
informed traders thus drawn is both rational, with probabilityx1(t) · x2(t)
the pair of informed traders consists of one rational and one nonrational, etc.

In each period, after a particular type combination (i n, jn) is thus drawn in
marketn, it becomes common knowledge to all market participants. These two
informed traders then participate in one-shot trading along with liquidity traders
and market makers in the market, based on the trading mechanism of Kyle and
Wang (1997)2 . For simplicity, we suppress the time indext in what follows, but
it should be understood that all random variables discussed below depend on it.
Informed traderj ( j = 1, 2) drawn in marketn has a unique access to a private
signals̃ j,n about the asset’s value ˜vn in the market. The correct distribution of the
signal iss̃ j,n = ṽn + ẽj,n. The forecast errors̃ej,n’s are independently and identi-
cally distributed forj = 1, 2 andn = 1, 2, . . . , N. However, the informed trader’s
belief about his or her signal depends on his or her type. In particular, informed
trader j thinks his signal iss̃j,n = ṽn + K j ẽj,n. If the trader is rational, his or
her belief reflects the correct distribution, i.e.,K j = 1. On the other hand, if the
trader is not rational, then his or her subjective belief is parameterized byK j =
K , whereK is a nonnegative misperception parameter such thatK 6= 1. Further-
more, a nonrational trader is overconfident if his or her subjective distribution is
too tight, i.e., 0≤ K < 1, or underconfident if it is too loose, i.e.,K > 1 (Oskamp
(1965), Alpert and Raiffa (1959), Einhorn and Hogarth (1978)).

With risk-neutrality, informed traderj submits a market order̃q j,n = qj,n(s̃ j,n)
to maximize his or her conditional expected trading profit,5̃ j,n, given his private

2 See Hirshleiferet al. (1994), Wang (1998), Odean (1998), and Danielet al.(1998, 2000) for other
overconfident trading models.
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signals̃ j,n, i.e.,

Max
qj,n

E[5̃ j,n | s̃j,n = sj,n] = E[(ṽn − p̃n)q̃j,n | s̃j,n = sj,n],

for j = 1, 2 and n = 1, 2, . . . , N. (10)

The subscriptj of the expectation operator denotes that the expectation is based
on traderj’ s belief. Liquidity traders in marketn submit a random quantitỹzn, and
their trading across markets,z̃n’s, are independently and identically distributed.
Competitive market makers (also called trader 0) observe the order imbalance
ỹn = q̃1,n + q̃2,n + z̃n and then clear the market by setting the asset pricepn equal
to the conditional expectation of the asset value ˜vn, given the observed order
imbalancẽyn as follows:

pn = p(ỹn) = E0[ṽn | ỹn = q̃1,n + q̃2,n + z̃n]. (11)

The subscript 0 of the expectation operator denotes that the expectation is based on
rational beliefs. Exogenous variables ˜vn, ẽ1,n, ẽ2,n, z̃n are independently and nor-
mally distributed with means zero and variancesσ 2

v , σ
2
e , σ

2
e , σ

2
z , respectively. The

quality of the private signals may be measured (inversely) by the noise-to-signal
ratioθ ≡ σe/σv. The amount of noise trading in each market may be measured by a
normalized ratioφ ≡ σz/σv. Kyle and Wang (1997) show that the one-shot model,
given the type combination (i n, jn), has a unique linear equilibrium (q1,n,q2,n, pn)
as follows,

q̃1,n = γ1,ns̃1,n =
(
1+ 2K 2

2θ
2
)

λnh
(ṽn + ẽ1,n), (12)

q̃2,n = γ2,ns̃2,n =
(
1+ 2K 2

1θ
2
)

λnh
(ṽn + ẽ2,n), (13)

p̃n = λn ỹn = γ1,n + γ2,n

(γ1,n + γ2,n)2+ (γ 2
1,n + γ 2

2,n

)
θ2+ φ2

(q̃1,n + q̃2,n + z̃n), (14)

whereh is a strictly positive constant, givenK1, K2 andθ .
The intensity parametersγ1,n andγ2,n and liquidity parameterλn depend on the

noise-to-signal ratioθ , the noise trading ratioφ, the misperception parameterK,
and the type combination (i n, jn) drawn at the beginning of the period. Moreover,
for the same type combination (i n, jn) = (i, j ) the three parameters are uniquely
determined, regardless of whatn is. Hence, without loss of generality, we may
suppress the market indexn and writeγ1(i, j ), γ2(i, j ), andλ(i, j ) as the three
parameters identical in those markets with the same type combination (i, j). With
the above equilibrium, the type-i trader’s return, given a type-j opponent in market
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n, denoted byR̃n(i, j ), is obtained as follows:

R̃n(i, j ) = q̃1,n

c0
(ṽn − p̃n) = 1

c0
{γ1(i, j )(ṽn + ẽi,n)

× [ṽn − λ(i, j )(γ1(i, j )(ṽn + ẽ1,n)+ γ2(i, j )(ṽn + ẽ2,n)+ z̃n)]}. (15)

Note that in the last equality of (15) we substitute forq̃1,n andp̃n from Eq. (12)–(14).
The individual type-i trader’s return in marketn, R̃n(i, j ), is stochastic be-

cause the realization of the type combination (i, j) in each market has a probability
xi (t)xj (t). Hence, we may identify the subsequence of those markets with the same
realized type combination (i, j ) as{nk}Ni, j

k=1. In each marketnk, the individual type-i
trader’s return,̃Rnk (i, j ), is still stochastic because it depends on the exogenous ran-
dom variables: ˜vn, ẽ1,n, ẽ2,n, andz̃n. Note, however, that these exogenous variables
are all independently and identically distributed across markets. As a result, the
individual type-i trader’s returns in these markets,R̃nk (i, j ), are independently and
identically distributed too. The average return of the type-i traders facing type-j op-
ponents across these markets is given byR̄(i, j ) =∑Ni, j

k=1 bk(i, j ) · R̃nk (i, j ), where
the weightbk(i, j ) is the relative size of the type combination (i, j ) in marketnk

such that the weights across these markets sum to one, i.e.,
∑Ni, j

k=1 bk(i, j ) = 1. If
the population share of each group in the economy is bounded below from zero,
then the number of markets of each type combination (i, j ) becomes sufficiently
large in a large economy, i.e., Ni, j →∞, as N →∞. Moreover, in the large
economy the average return of the type-i traders across these markets converges
to the expected return of a representative type-i trader in these markets, denoted
by E[ R̃(i, j )]. I.e., asN →∞,

R̄(i, j ) =
Ni, j∑
k=1

bk(i, j ) · R̃nk (i, j )→ E[ R̃(i, j )]

= σ 2
v

c0
γ1(i, j )(1− λ(i, j )(γ1(i, j )+ γ2(i, j ))− λ(i, j )γ1(i, j )θ2). (16)

Note that the last equality in (16) is obtained by taking expectations on both sides
of Eq. (15). For simplicity, we omit the subscript 0 for the expectation operator, but
it should be understood that the expectation is based on the correct distributions,
i.e., rational beliefs. In addition, we drop the market indexnk when we write
the expected return,E[ R̃(i, j )], because the individual returns̃Rnk (i, j ) for all nk

are independently and identically distributed across these markets. Equation (16)
highlights the strategic nature of the pairwise contest between the two randomly
matched informed traders since each trader’s expected return depends also on the
other trader’s type.

The average return of the type-i traders across all markets in the economy,
R̄i (x(t)), is given byR̄i (x(t)) = b(i,1)

b(i,1)+ b(i,2) · R̄(i, 1)+ b(i,2)
b(i,1)+ b(i,2) · R̄(i, 2), where
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the weightb(i, j ) is the relative size of the type combination (i , j ) in the econ-
omy such that the weights sum to one, i.e.,

∑2
i=1

∑2
j=1 b(i, j ) = 1. In the large

economy, the relative size of each type-combination approaches the corresponding
population distribution, i.e.,b(i, j )→ xi (t) · xj (t). As a result, the average return
of the type-i traders converges to the expected return of the representative type-i
trader,E[ R̃i (x(t))], in the large economy. I.e., asN →∞,

R̄i (x(t)) = b(i, 1)

b(i, 1)+ b(i, 2)
· R̄(i, 1)+ b(i, 2)

b(i, 1)+ b(i, 2)
· R̄(i, 2)

→ x1(t) · E[ R̃(i, 1)]+ x2(t) · E[ R̃(i, 2)] = E[ R̃i (x(t))]. (17)

Applying the payoff function, i.e., the expected return, in (17) to the general
population dynamic in (9) yields the specific population dynamic for type-2 traders
in the pairwise contest as follows:

ẋ2(t) = x2(t)(1− x2(t))(E[ R̃2(x(t))] − E[ R̃1(x(t))])

= x2(t)(1− x2(t))((a1+ a2)x2(t)− a1),

wherea1 ≡ E[ R̃(1, 1)]− E[ R̃(2, 1)],a2 ≡ E[ R̃(2, 2)]− E[ R̃(1, 2)]. (18)

The population dynamic in (18) depends crucially on the two return parameters,
a1 anda2, wherea1 represents the expected return differential between a type-1
trader and a type-2 trader, both having a type-1 opponent;a2 represents the ex-
pected return differential between a type-2 trader and a type-1 trader, both having a
type-2 opponent. We may partition the population dynamic (18) into four mutually
exclusive categories, depending on the two return parameters: (I)a1 > 0,a2 < 0,
(II) a1 < 0,a2 > 0, (III) a1 > 0,a2 > 0, and (IV) a1 < 0,a2 < 0. Following the
standard analysis of the dynamic equilibrium in the corresponding evolutionary
game, we obtain the asymptotically stable equilibria for each category. The results
are shown in Theorem 1 below:

THEOREM 1. In our dynamic pairwise contest between rational and nonra-
tional informed traders, the resulting population dynamic is given in(18). The
long-run equilibria of the dynamic have four categories, depending on the signs
of the return parameters a1 and a2, defined in(18):

(I) If one always earns a higher expected return by adopting a rational strat-
egy than by adopting a nonrational strategy, regardless of his or her opponent’s
type, then rational traders as a group will dominate the economy in the long
run.

(II) If one always earns a higher expected return by adopting a nonrational
strategy than by adopting a rational strategy, regardless of his or her opponent’s
type, then nonrational traders as a group will dominate the economy in the long
run.
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(III) If one always earns a higher expected return by adopting the same strat-
egy as his or her opponent’s type, then rational(nonrational) traders as a group
will dominate the economy in the long run when the initial population share of the
nonrational traders, x2(0), is below(above) the threshold level a1/(a1+ a2).

(IV) If one always earns a higher expected return by adopting the opposite
strategy of his or her opponent’s type, then both rational and nonrational traders
will survive in the long run such that their population share distribution approaches
the unique asymptotically stable equilibrium: (a2/(a1+ a2),a1/(a1+ a2)).

Figure 1 illustrates the evolution of the population share of the nonrational
traders as a group according to Theorem 1. The theorem indicates that nonrational
traders dominate in category II, they may dominate in category III if their initial
population share is greater thana1/(a1+ a2), and they survive in category IV. But,
Theorem 1 does not show whether the nonrational traders in these categories in-
clude both overconfident and underconfident traders, only one kind, or even none
if the categories are in fact nonexistent in the model. Note, however, the theorem
does show that these results depend on the signs of the two return parametersa1

anda2. It turns out that the signs depend only on two key parameters of the model:
the noise-to-signal ratioθ (an inverse measure of the quality of the private signals)

FIG. 1. The population dynamic under the pairwise contest.

(I) lim t→∞ x(t) = (1, 0) is the unique asymptotically stable equilibrium.
(II) lim t→∞ x(t) = (0, 1) is the unique asymptotically stable equilibrium.
(III) lim t→∞ x(t) = (1, 0) if x2(0) ∈ [0, a1

a1+a2
); (0, 1) if x2(0) ∈ ( a1

a1+a2
, 1].

(IV) lim t→∞ x(t) = ( a2
a1+a2

,
a1

a1+a2
) is the unique asymptotically stable equilibrium.

x2 is the population share of the group of type-2 (i.e., nonrational) traders.
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and the misperception parameterK (an inverse measure of the confidence level of
traders.) Recall that an informed trader is overconfident if 0≤ K < 1, underconfi-
dent if K > 1, and rational ifK = 1. We can identify the set of the two parameters
θ andK in R2

+ that gives rise to each category such that I= {(θ, K ) ∈ R2
+ | a1 >

0,a2 < 0}, II = {(θ, K ) ∈ R2
+ | a1 < 0,a2 > 0}, etc. The result is illustrated in

Fig. 2 where theθ − K space is normalized intoX − Y space so that the entire
universeR2

+ can be shown equivalently in the finite space [0, 2]× [0, 2].
Several observations about Fig. 2 are in order. First, underconfident traders can

never survive in the long run since the entire parameter space for underconfident
trading, i.e.,K > 1, belongs to category I. In this category, rational traders always
dominate. Second, the survivability of overconfident traders rises with the quality
of their private signals and falls with the degree of overconfidence. For example,
the figure shows that if the quality of the private signals is sufficiently high, i.e.,

FIG. 2. The categories of the equilibria under the pairwise contest.

(I) Rational traders dominate nonrational traders in the long run.
(II) Nonrational traders dominate rational traders in the long run.
(III) Nonrational traders dominate if their wealth share is large enough; otherwise, rational

traders dominate in the long run.

∗ The region NS corresponds to the case where the equilibrium of the one-shot model does not exist.
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θ is sufficiently small, overconfident traders, i.e.,K < 1, always dominate in
category II. One may regard the ex-ante variance of the risky asset value,σ 2

v , as
the fundamental risk in the economy. Holding forecast errorσ 2

e constant, then a
smallθ = σe/σv implies large fundamental risk,σ 2

v . In this context, overconfident
traders tend to dominate the market when the fundamental risk is large. On the other
hand, if the quality of the signals is relatively poor, i.e.,θ is large, then overconfident
traders can dominate only if their degree of overconfidence is modest, i.e.,K is not
too small. This result is similar to Hirshleifer and Luo (2001). This similarity is
remarkable because while fundamental risk is priced in Hirshleifer and Luo with
risk-averse traders, the risk is not priced in our model under risk-neutrality.

In category III, the outcome depends on the initial population share distribution,
x(t), and this category comprises only a small subset of the parameter spaceR2

+.
Category IV, where both types of traders survive and coexist, is an empty set.
Following Kyle and Wang (1997), region NS in the figure corresponds to the
case where the one-shot model does not have equilibrium. Therefore, for all the
parameter space where the equilibrium does exist, given a confidence parameterK ,
Fig. 2 implies that either rational or overconfident traders will dominate in the long
run. However, if nonrational traders’ confidence level,K , changes from time to
time due to some exogenous, e.g., psychological, factors, then Fig. 1 suggests that
the competitive advantage of a certain type may shift accordingly over time. For
example, if nonrational traders’ sentiment suddenly shifts from underconfidence
to overconfidence, then rational traders tend to lose their competitive advantage
to the newly minted overconfident opponents, as the long-run equilibrium now
changes from category I to II, etc.

The dominance of overconfident traders over their rational opponents depends
on two factors. First, overconfidence acts like a commitment device to aggressive
trading, which makes their rational opponents less aggressive (Kyle and Wang
(1997)). Second, given the private signals, informed traders’ demands are positively
correlated with the risky asset’s value. These two factors together imply that, in
comparison to rational traders, overconfident traders tend to buy more of the risky
asset when their private signals indicate a positive prospect and sell more when
the signals suggest the opposite. As a result, the demand differential between the
overconfident traders and their rational opponents tends to be positively correlated
with the asset’s value. Such a positive correlation leads to a positive expected
return differential between overconfident and rational traders, i.e.,E[ R̃2(x(t)))−
E(R̃1(x(t))] > 0, despite the fact that the model assumes risk neutrality. To see
this, using (3) the expected return differential can be expanded as follows:

E[R2(x(t))] − E[R1(x(t))] = E[(α̃2,n(x(t))− α̃1,n(x(t)))(r̃n − r )]

= E[α̃2,n(x(t))− α̃1,n(x(t))](E[r̃n] − r )

+Cov[α̃2,n(x(t))− α̃1,n(x(t)), r̃n]

= Cov[α̃2,n(x(t))− α̃1,n(x(t)), r̃n]. (19)
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Although there is no risk premium under risk neutrality, i.e.,E[r̃n] − r = 0, the
expected return differential is positive when the demand differential is positively
correlated with the risky asset’s value, i.e.,Cov[α̃2,n(x(t))− α̃1,n(x(t)), r̃n] > 0.
As a result, the population share of the overconfident traders increases in the
evolutionary process.

III. INVESTOR SENTIMENT IN A PLAYING-THE-FIELD CONTEST

In this section, we consider noise traders without market power in a playing-
the-field contest. Consider a large economy with one riskless asset andN risky
assets. The riskless asset is in perfectly elastic supply and pays a fixed dividend
r . The price of the riskless asset is normalized at one and hence the dividendr
is also the risk-free rate. The risky assetn (n = 1, 2, . . . , N) yields an uncertain
dividends ˜εt,n at the end of each periodt, but its supply is fixed and normalized
at one. Assume that the dividends ˜εt,n across time and markets are independently
and identically distributed with normal meanr and varianceσ 2

ε . While the risky
asset’s expected dividend paymentr is the same as the riskless rate, the expected
total investment returns of the two assets need not be the same. This is so because
the risky asset’s price depends on the demand in the market, while the riskless
asset’s price is fixed.

In each asset marketn (n = 1, 2, . . . , N), there are many two-period-lived
traders. The specific trading mechanism is based on the overlapping generations
model of DSSW (1990)3. Traders of the young generation trade the risky assetn at
the market pricept,n and then liquidate their positions of the risky asset at the price
p̃t+1,n next period when they become old. As a result, the young traders’ demands
for the risky assetn depend on their beliefs about the distribution of the liquida-
tion price next period. Given the identical, normal distributions of fundamental
dividends ˜εt,n across markets, the liquidation pricesp̃t+1,n across markets are nor-
mally distributed with identical meanηt+1 and varianceσ 2

pt+1
. In each marketn,

there are two types of traders, depending on their beliefs about the mean,ηt+1.
Type-1 (rational) traders accurately perceive the mean of the liquidation prices
p̃t+1,n, i.e., E1

t [ p̃t+1,n] = ηt+1, while type-2 (noise) traders misperceive the mean
ηt+1 by a normal random variable ˜ρt,n, i.e., E2

t [ p̃t+1] = ηt+1+ ρ̃t,n. Note that the
superscripti of the expectation operator indicates that the expectation is based on
type-i traders’ beliefs. Following DSSW (1990), let investors’ one-period-ahead
expectations about the variance,σ 2

pt+1
, be equal to the variance in the current pe-

riod, i.e.,Ei
t [σ

2
pt+1

] = σ 2
pt

, for i = 1, 2. In addition, assume that the misperception
variables ˜ρt,n across time and markets are independently and identically distributed
with meanρ∗ and varianceσ 2

ρ and that they are independent of the fundamental

3 See Kyle (1985), Russell and Thaler (1985), Black (1986), De Longet al. (1989), Campbell and
Kyle (1993), Barberiset al. (1998), and Wang (2000) for other noise trading (or investor sentiment)
models.
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dividentsε̃t,n. Note that the “noise trader risk” is greater if the variance of the mis-
perception variable,σ 2

p, is greater. All traders have CARA utility with a coefficient
of risk aversionγ . The representative type-i trader in marketn chooses a quantity
qi

t,n of the risky assetn to maximize his or her expected utility, given the pricept,n

and the initial capitalc0, as follows:

Max
qi

t,n

Ei
t

[
U
(
ω̃i

t+1,n

)] = Ei
t

[−e−(2γ )ω̃i
t+1,n
]
,

whereω̃i
t+1,n = c0+ qi

t,n(ε̃t,n + p̃t+1,n − (1+ r )pt,n), i = 1, 2. (20)

Solving Eq. (20) yields the asset demand for each representative trader as follows:

q1
t,n=

r + ηt+1− (1+ r )pt,n

2γ
(
σ 2

pt
+ σ 2

ε

) ; q2
t,n=

r + ηt+1+ ρt,n− (1+ r )pt,n

2γ
(
σ 2

pt
+ σ 2

ε

) . (21)

Equation (21) indicates that abullishnoise trader (i.e.,ρt,n > 0) holds more of the
risky asset than a rational trader does, while abearishnoise trader (i.e.,ρt,n < 0)
demands less. The market-clearing price is set such that the total demand for asset
n equals its total supply (which is normalized to one). Given that the measure of
each type of trader in the market is identified with its population share, the market
clearing condition is:

q1
t,n(1− x2(t))+ q2

t,nx2(t) = 1. (22)

Plugging Eq. (21) into (22) and rearranging yields the equilibrium pricep̃t,n as
follows:

p̃t,n = 1
1+r

[
r + ηt+1− 2γ

(
σ 2

pt
+ σ 2

ε

)+ x2(t)ρ̃ t,n
]
,

whereσ 2
pt
= x2

2(t)σ 2
ρ

(1+r )2 . (23)

Equation (23) shows that the equilibrium pricep̃t,n in marketn depends crucially
on the misperception variable ˜ρt,n in that market. Given that the misperception
variablesp̃t,n across markets are independently and identically distributed, so are
the asset prices̃pt,n across markets. Furthermore, the investment return of the
type-i trader in marketn, i.e., R̃i,n(x(t)), is given by

R̃i,n(x(t))= qi
t,n

c0
(ε̃t,n+ p̃t+1,n−(1+ r ) p̃t,n), for i = 1, 2; n= 1, 2, . . . , N.

(24)

Since the dividends ˜εt,n and the asset prices̃pt,n are both independently and
identically distributed across markets, so are the investment returnsR̃i,n(x(t)) of
the type-i traders. The average return of the type-i traders across markets,R̄i (x(t)),
is given by R̄i (x(t)) =∑N

n=1 bi,n R̃i,n(x(t)), where the weightbi,n is the relative
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size of type-i traders in marketn such that the weights across markets sum to one,
i.e.,

∑N
n=1 bi,n = 1. Given that the individual returns̃Ri,n(x(t)) are independently

and identically distributed across markets, the average return converges to the ex-
pected investment return of the representative type-i trader, i.e.,E(R̃i (x(t))), in
the large economy. I.e., asN →∞.

R̄i (x(t)) =
N∑

n=1

bi,n R̃i,n(x(t))→ E[ R̃i (x(t))] = E[Et [ R̃i,n(x(t)) | ρ̃t,n]] . (25)

The last equality in Eq. (25) states that the unconditional expected return is the
expected value of the conditional expected return, given the misperception vari-
ableρ̃t,n. Using Eqs. (21)–(24), it is straightforward to calculate the conditional
expected return for each type of trader as follows:

Et [ R̃1,n(x(t)) | ρ̃t,n] = q1
t,n

c0
(r + ηt+1− (1+ r )pt,n)

=
(
2γ
(
σ 2

pt
+ σ 2

ε

)− x2(t)ρ̃t,n
)2

2γ
(
σ 2

pt
+ σ 2

ε

)
c0

(26)

Et [ R̃2,n(x(t)) | ρ̃t,n]

=
(
2γ
(
σ 2

pt
+ σ 2

ε

)− x2(t)ρ̃t,n
)(

2γ
(
σ 2

pt
+ σ 2

ε

)+ (1− x2(t))ρ̃t,n)

2γ
(
σ 2

pt
+ σ 2

ε

)
c0

. (27)

Given (26) and (27), the unconditional expected return differential between the
representative type-2 trader and the representative type-1 trader in the economy,
i.e., E[ R̃2(x(t))] − E[ R̃1(x(t))], is obtained as follows:

E[ R̃2(x(t))] − E[ R̃1(x(t))] = E[Et [ R̃2,n(x(t)) | ρt,n] − Et [ R̃1,n(x(t)) | ρt,n]]

= E

[
1

c0

(
ρ̃t,n −

x2(t)ρ̃2
t,n

2γ
(
σ 2

pt
+ σ 2

ε

))]

= 1

c0

ρ∗ − ρ∗2+ σ 2
ρ

2γ
(

x2(t)σ 2
ρ

(1+ r )2 + σ 2
ε

x2(t)

)
. (28)

Applying Eq. (28) to the general population dynamic in (9) yields the specific
population dynamic for the playing-the-field contest (without loss of generality,
show the population share for type-2 trader):

ẋ2(t) = x2(t)(1− x2(t))(E[ R̃2(x(t))] − E[ R̃1(x(t))])

= 1

c0
x2(t)(1− x2(t))

ρ∗ − ρ∗2+ σ 2
ρ

2γ
(

x2(t)σ 2
ρ

(1+ r )2 + σ 2
ε

x2(t)

)
 . (29)
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Given the population dynamic in (29), we examine its dynamic equilibrium fol-
lowing the standard analysis in the corresponding evolutionary game. In doing so,
we consider first the special case without fundamental risk, i.e.,σ 2

ε = 0, and then
the general case with fundamental risk, i.e.,σ 2

ε 6= 0, respectively.

A. Dynamic Playing-The-Field Contest without Fundamental Risk

If there is no fundamental risk, i.e.,σ 2
ε = 0, then the population dynamic for the

playing-the-field contest reduces to the following:

ẋ2(t) = x2(t)(1− x2(t))(E[ R̃2(x(t))] − E[ R̃1(x(t))])

= 1

c0
x2(t)(1− x2(t))

(
ρ∗ − (1+ r )2

(
ρ∗2+ σ 2

ρ

)
2γ σ 2

ρ x2(t)

)
. (30)

Solving ẋ2(t) = 0 yields the steady states of the population dynamic in (30). The
statesx2 = 0 andx2 = 1 are always stationary in the dynamic. If noise traders on
average have negative sentiment, i.e.,ρ∗ < 0, then the expected return differential
is negative for allx(t). This means that starting from any nonstationary statesx(t) 6∈
{(1, 0), (0, 1)}, the population share of the noise traders will decline to zero in the
long run. On the other hand, if noise traders on average have positive sentiment,
i.e.,ρ∗ > 0, then for some parameter values the expected return differential is also
negative. In this case, the population share of the noise traders will also decline to
zero in the long run. In addition, there may be one interior steady state,x2 = µ,
whereµ is given byµ = ((1+ r )2(ρ∗2+ σ 2

ρ ))/2γρ∗σ 2
ρ . Interestingly, it turns out

that the interior steady state is unstable and the long run equilibrium depends on the
current population state relative to the interior steady state. To see this, note that if
the current noise trader share is below the interior steady state, i.e.,x2(t) < µ, then
the expected return differential is always negative and, as a result, the population
share of the noise traders will decline to zero in the long run. On the other hand, if
the current noise trader share is above the interior steady state, i.e.,x2(t) > µ, then
the expected return differential is always positive and the population share of the
noise traders will increase to one. Such a dichotomy of long-run equilibria implies
that the unique interior steady state itself is asymptotically unstable. Theorem 2.1
summarizes the dynamic equilibrium result as follows:

THEOREM 2.1. In our dynamic playing-the-field contest without fundamental
risk, the resulting population dynamic is given in(30). Given the interior steady
stateµ, the equilibria of the dynamic have three categories depending on the
average sentimentρ∗ and the noise trader riskσ 2

ρ .

(I) If noise traders on average have negative sentiment(ρ∗ < 0), then ratio-
nal traders as a group will dominate the economy in the long run.

(II) If noise trader risk is small or if average investor sentiment is positive
but not moderate, then rational traders as a group will dominate the economy in
the long run.
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(III) If noise trader risk is large and if average investor sentiment is moderate,

then rational(nonrational) traders as a group will dominate the economy in the
long run when the initial population share of the nonrational traders, x2(0), is
below(above) the threshold levelµ.

Figure 3 illustrates the evolution of the population share of the noise traders as
a group according to Theorem 2.1 under each of the three categories. The intuition
of Theorem 2.1 is as follows. In category I, noise traders with a negative average
sentiment,ρ∗ < 0, tend to hold less of the undervalued risky asset and, as a result,
lose money to the rational traders who hold more of the risky asset. In category
II with positive average sentiment,ρ∗ > 0, consider an extreme case where the
noise trader risk is negligible relative to the average sentiment such thatσρ

ρ∗ → 0.
In this special case with neither fundamental risk nor, effectively, noise trader risk,
the noise traders who overestimate the expected future price of the risky asset
will trade extremely large quantity and, as a result, lose arbitrarily large profits in
trading against rational traders with unlimited arbitrage.

Category III corresponds to the case where noise traders have positive sentiment
and the noise trader risk,σ 2

ρ , is relatively large. With a positive sentiment, noise
traders tend to hold more of the risky asset and consequently push up the price of
the risky asset (see Eq. (23).) On the other hand, the large noise trader risk tends
to trim noise traders’ aggressive trading and hence eliminate some of the price

FIG. 3. The population dynamic under the playing-the-field contest without fundamental risk.

(I) lim t→∞ x(t) = (1, 0) is the unique asymptotically stable equilibrium.
(II) lim t→∞ x(t) = (1, 0) is the unique asymptotically stable equilibrium.

(III) lim t→∞ x(t) =
{

(1, 0) if x2(0) ∈ [0, µ);

(0, 1) if x2(0) ∈ (µ, 1].

x2 is the population share of the group of type-2 (i.e., nonrational) traders.
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pressure. Such a price reduction effect increases with the presence of noise traders
(see Eq. (23).) Therefore, if the presence of the noise traders is large enough,
i.e.,x2(t) > µ, then the noise traders’ moderately aggressive trading will generate
greater returns than the rational traders do. On the other hand, if the presence of
the noise traders is not large enough, i.e.,x2(t) < µ, then rational traders are more
willing to bet against the noise traders’ misperception and, as a result, exploit profits
from it. Note that DSSW’s (1990) long run dynamic without fundamental risk is
essentially the same as our category III, while our categories I and II are absent.

B. Dynamic Playing-The-Field Contest with Fundamental Risk

In this section, we analyze the dynamic equilibrium under the general case with
fundamental risk, i.e.,σ 2

ε 6= 0. Solvingẋ2(t) = 0 for the population dynamic in (29)
yields the steady states of the population dynamic. The statesx2 = 0 andx2 = 1
are always stationary in the dynamic. The long run equilibria of the population
dynamic depend critically on the expected return differential in (29). If noise traders
have negative average sentiment, i.e.,ρ∗ < 0, then the expected return differential
is negative for allx(t). This means that starting from any nonstationary states the
population share of the noise traders will decline to zero in the long run. On the
other hand, if noise traders have positive average sentiment in the economy, i.e.,
ρ∗ > 0, then for some parameter values the expected return differential is positive
for all x(t). In this case, starting from any nonstationary states the population share
of the noise traders will increase to one in the long run. The third possibility is
that for some parameter values the expected return differential is zero. In this case,
the dynamic may have at most two interior steady states, denoted byµL andµH ,
respectively, as follows,

µL =
(1+ r )2

(
σ 2
ρ + ρ∗2

)− (1+ r )
√

(1+ r )2
(
σ 2
ρ + ρ∗2

)2− 16γ 2σ 2
ρ σ

2
ε ρ
∗2

4γ σ 2
ρ ρ
∗ ,

(31)

µH =
(1+ r )2

(
σ 2
ρ + ρ∗2

)+ (1+ r )
√

(1+ r )2
(
σ 2
ρ + ρ∗2

)2− 16γ 2σ 2
ρ σ

2
ε ρ
∗2

4γ σ 2
ρ ρ
∗ ,

(32)

provided that the expression inside the square roots in (31) and (32) is nonnegative.
Following the standard analysis of the dynamic equilibrium in the corresponding
evolutionary game (see the Appendix for detail), we obtain the asymptotically
stable equilibria for the dynamic in (29) as shown in Theorem 2.2. below:

THEOREM2.2. In our dynamic playing-the-field contest with fundamental risk,
the resulting population dynamic is given in(29). Given the two interior steady
statesµL andµH from (31) and(32), respectively, the long run equilibria of the
dynamic have four categories.
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(I) If noise traders on average have negative sentiment, then rational traders
as a group will dominate the economy in the long run.

(II) If noise traders on average have positive sentiment and they always
earns higher expected returns than do the rational traders, regardless of the cur-
rent population share distribution, then the noise traders as a group will dominate
the economy in the long run.

(III) If noise traders on average have positive sentiment and there exists a
unique interior steady state, (1− µL , µL ), then both rational and noise traders
will survive in the long run such that their population share distribution approaches
the unique interior steady state.

(IV) If noise traders on average have positive sentiment and there exist
two interior steady states, (1− µL , µL ) and (1− µH , µH ), then there are two
possibilities, depending on the initial population share of the noise traders, x2(0).

(i) If the noise traders’ initial population share is belowµH , then both
rational and noise traders will survive such that the population share distribution
approaches the lower interior steady state:(1− µL , µL ).

(ii) If the noise traders’ initial population share is aboveµH , then the
noise traders as a group will dominate the economy in the long run.

Figure 4 illustrates the evolution of the population share of the noise traders as
a group according to Theorem 2.2. The theorem suggests that noise traders van-
ish in the long run if their average sentiment is bearish, i.e.,ρ∗ < 0 (category I);
otherwise, they always survive under positive sentiment, i.e.,ρ∗ > 0. Further-
more, noise traders dominate the markets if they always earn higher expected
returns than do rational traders, i.e.,E[ R̃2(x(t))] − E[ R̃1(x(t))] > 0 (category II).
In category III, starting from any nonstationary states, i.e.,x(t) 6∈ {(1, 0), (0, 1)},
the population share distribution will converge to the unique asymptotically stable
interior equilibrium, (1− µL , µL ), where both rational and noise traders survive
in the long run. Category IV has two interior steady states. Noise traders dominate
if their initial population share is greater than the higher interior stateµH ; oth-
erwise, they survive along with rational traders in the long run as the population
share distribution converges to the unique asymptotically stable interior equilib-
rium, (1− µL , µL ). DSSW (1990) obtain similar results regarding the survival
of noise traders based on an imitation process where the wealth of trader is held
fixed. In fact, DSSW’s long run dynamic with fundamental risk is essentially the
same as category IV, while the results for other categories are absent. Therefore,
our finding in Theorem 2.2 extends DSSW (1990) by showing that the survival of
noise traders is justified even if the wealth accumulation process is endogenously
determined.

Theorem 2.2 shows that the categorization depends on the average sentiment
parameter,ρ∗, and the values of the two interior states,µL andµH . Hence, we
may determine the exogenous parameter space for each category according to the
values of these parameters. The parameter space for category I is straightforward
to obtain, since it consists of all cases with negative average sentiment, i.e.,ρ∗ < 0.
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FIG. 4. The population dynamic under the playing-the-field contest with fundamental risk.

(I) lim t→∞ x(t) = (1, 0) is the unique asymptotically stable equilibrium.
(II) lim t→∞ x(t) = (0, 1) is the unique asymptotically stable equilibrium.
(III) lim t→∞ x(t) = (1− µL , µL ) is the unique asymptotically stable equilibrium.

(IV) lim t→∞ x(t) =
{

(1− µL , µL ) if x2(0) ∈ [0, µH );

(0, 1) if x2(0) ∈ (µH , 1].

x2 is the population share of the group of type-2 (i.e., nonrational) traders.

But, obtaining the respective parameter spaces for categories II to IV is difficult. To
simplify the matter, define a normalized measure of the average investor sentiment
by ϕ ≡ ρ∗/σρ , a ratio of the fundamental to noise trader risk byψ ≡ σε/σρ and a
constantζ ≡ 4γρ∗/(1+ r ). Rewrite the expressions of the two interior statesµL

andµH in (31) and (32) as follows:

µL = 1+ r

ζ
(1+ ϕ2−√g), µH = 1+ r

ζ
(1+ ϕ2+√g), and

g = (1+ ϕ2)2− ψ2ζ 2. (33)

Obviously, the two interior statesµL andµH exist only ifg > 0. In order to focus
on the effects of the average investor sentiment,ϕ, and the ratio of the fundamental
to noise trader risk,ψ , fix the constantζ = 3 and the risk-free rater = 0.05. We
can identify the set of the two parameters (ϕ,ψ) in R2

+ that gives rise to each
category, respectively, as II= {(ϕ,ψ) ∈ R2

+ | g < 0, org > 0 andµL > 1}, III =
{(ϕ,ψ) ∈ R2

+ | g > 0 and 0< µL < 1< µH }, and IV = {(ϕ,ψ) ∈ R2
+ | g > 0

and 0< µL < µH < 1}. The result is illustrated in Fig. 5 where theψ − ϕ space
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FIG. 5. The categories of the equilibria under positive sentiment.

(II) Nonrational traders dominate rational traders in the long run.
(III) Both rational and nonrational traders survive in the long run.
(IV) Nonrational traders dominate if their wealth share is large enough; otherwise, both types

of traders survive in the long run.

∗ Category I corresponds to the case with negative sentiment (i.e.,Y < 0) and hence is not shown.

is normalized intoX − Y space so that the entire universeR2
+ can be shown in the

finite space [0, 2]× [0, 2].
Figure 5 suggests that bullish noise traders dominate the economy only when

the fundamental risk is not too small relative to the noise trader risk, i.e.,ψ ≡
σε/σρ À 0, and their positive sentiment,ϕ ≡ ρ∗/σρ , is not too extreme (category
II). The intuition is as follows. A relatively large fundamental risk will deter
rational traders’ ability and willingness to trade against the mistake of noise traders.
A modest positive sentiment allows noise traders to hold more of the risky asset
without causing too much undesirable price impact. As a result, moderately bullish
noise traders tend to generate higher expected returns than do the rational traders,
particularly when the fundamental risk is large. This implies that in the large
economy these modest noise traders as a group will accumulate wealth at a higher
speed than will the rational traders. As a result, the noise traders will eventually
dominate the market in the long run as their population share increases to one.
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On the other hand, if the fundamental risk is small relative to the noise trader risk
and the positive sentiment is excessive, then the resulting adverse price impact
may be large enough to cancel out the benefit of the positive sentiment. In this
case, such bullish noise traders tend to survive but not dominate (category III).
Last, if both the positive sentiment and the fundamental risk are small (cate-
gory IV), then the noise traders as a group either dominate or survive in the long
run, depending on their initial population share relative to the higher interior state,
µH , as described in Theorem 2.2.

IV. DISCUSSION OF ANALYSIS INCLUDING
EMPIRICAL IMPLICATIONS

In this section, we discuss the implications and generalization of our theoretical
analysis. It is worth noting first that, unlike the usual biological population process,
we do not obtain the population dynamic simply by assuming some fitness criterion,
e.g., recent profits or expected utility, for the determination of the growth of each
type of trader. Instead, following Blume and Easley (1992), we take the view
that there is a natural population dynamic in asset markets that emerges from the
process of wealth accumulation. In this process, the endogenously determined
growth rate of wealth accumulation governs the relative fitness of each type of
trader in the market. As a result, this dynamic does not depend on individual
adaptation as required in the usual learning–imitation process. For example, both
DSSW (1990) and Hirshleifer and Luo (2001) assume recent profitability to be the
fitness criterion in their imitation processes, whereas Palomino (1996) assumes
expected utility as the fitness criterion in his adopted imitation process. Thus, our
endogenously determined group wealth accumulation process distinguishes our
model from these other models.

The population dynamic in this paper depicts the growth of the wealth of the
group, not of individual traders. In fact, the survival of the group of nonrational in-
vestors is, to some extent, at the expense of the individual investors. This happens
because irrationality (overconfidence or investor sentiment) induces individual
traders to trade more aggressively and, as a result, they have a higher expected
return as well as a higher variance than rational traders do. This means that indi-
vidual nonrational investors tend to have a higher probability of going bankrupt
than do individual rational investors. In this sense, individual nonrational investors
may be subject to the gambler’s ruin problem (Samuelson (1971, 1977)). In this
paper, however, we show that in a large economy where the high variance risk is
diversified in the group wealth portfolio, the resulting population dynamic is driven
primarily by the expected return differential between the two groups. Therefore,
the gambler’s ruin problem at the individual level does not prevent the survival of
nonrational investors as a group.

What happens then for a small economy where the high variance risk cannot
be diversified away? In this case, there is a nonlinear (concave) relation between
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return and population growth. Palomino (1996) examines this case and finds that
spiteful noise traders can hurt rational investors more than themselves. As a result,
even with the high variance risk, the noise traders can still dominate the market
if they are moderately over-optimistic and if the fundamental risk is relatively
large. Remarkably, the condition for the survival of noise traders in a small econ-
omy is essentially the same as the condition obtained in our model under a large
economy. This invariance result highlights that our main conclusion—moderately
nonrational investors can dominate the market, particularly when the fundamen-
tal risk is large—is robust to a nonlinear (concave) relation between return and
population growth.

Overconfidence acts like a commitment device to aggressive trading in our pair-
wise contest, but the commitment device effect does not require that overconfident
traders move first. In fact, at the beginning of each contest a trader does not know
which type of the other trader, rational or nonrational, he or she is going to face.
There are four possible type combinations of the two traders and the probabil-
ity of each combination is governed by the population distribution at that time.
The duopoly model of Kyle and Wang (1997) does not require that overconfident
traders move first either. In fact, Kyle and Wang show that if a rational trader
moves first, then a moderately overconfident trader will not only outperform the
first-move rational trader, but also do better than if he or she were also rational.
On the other hand, if an overconfident trader moves first, then the second mover is
better off being overconfident than being rational. This leads to a Nash equilibrium
in which both traders are overconfident. This equilibrium is a prisoner’s dilemma
in which both traders make less profits than if they both were rational. This Nash
equilibrium outcome generalizes the special case of a single overconfident insider
as in Odean (1998).

In our evolutionary model once investors are born to be a certain type (rational or
nonrational), they are “programmed” to their type in the evolutionary game. One
might argue that overconfident investors should learn over time to change their
erroneous belief and eventually converge to the rational belief. Empirical evidence
in psychology literature (Kahnemanet al.(1982)) shows that people do not update
their beliefs rationally. For example, Danielet al. (1998) consider an updating
rule based on biased self-attribution—a rule by which investors essentially believe
“heads I win, tails it’s chance” (Langer and Roth (1975) and Gervais and Odean
(2001)). In such a biased learning process, overconfident beliefs need not converge
to rational beliefs.

The most interesting empirical implication of our analysis lies in the area of
fund management. Under the view of the efficient market hypothesis, all assets
are efficiently priced and hence it is optimal to invest passively in the index fund.
One can view, therefore, these passive fund managers as the rational traders in the
market. On the other hand, fund managers, who are overconfident about their pri-
vate information or too optimistic about the future prospect of the asset value, tend
to disagree with the market efficiency hypothesis and trade actively and aggres-
sively in the market. In other words, these active fund managers tend to manifest
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themselves as the nonrational traders in the market. In this context, our analysis
of the survival issue provides several new empirical implications for the survival
of active fund management. First, although individual active fund managers trade
more aggressively and hence die faster than individual passive fund managers, the
active fund management style (i.e., the “group”) can still persist in the market,
e.g., Fidelity investment group versus Vanguard investment group.

Second, the group of active fund managers survives better in a market with high
fundamental risk. This means that active fund management should be more popular
in the market where the fundamental value of assets is more difficult to assess. This
leads to several testable implications. For example, active fund management should
be more popular in high-risk funds than in low-risk funds. Similarly, active fund
management should be more popular in the stock market than in the bond market
and more popular in emerging markets than in the U.S. market, etc. Finally, while
individual active fund managers may display various degrees of overconfidence
or investor sentiment, the surviving active fund managers should exhibit moderate
aggressiveness, rather than extreme aggressiveness.

Although in this paper we focus on the survival of nonrational investors in asset
markets, our key finding that moderately aggressive, nonrational agents can en-
hance their survivability seems to have broader applications in other economic set-
tings. For example, Bernardo and Welch (2000) examine a model of informational
cascades and find that overconfident entrepreneurs, who overweigh their private
information, can better convey valuable information to the group and hence avoid
the bad herding equilibrium. Goel and Thakor (2000) consider a model of leader-
ship and show that the overconfident manager, who understimates his or her project
risk, has a greater chance to be chosen as the leader (CEO) than an otherwise iden-
tical rational manager. This is so because the race to CEO is like a winner-take-all
game, in which only the extreme positive performance will be awarded.

V. CONCLUSION

We examine the long run survival of nonrational traders in a dynamic, evolu-
tionary model. Specifically, we develop a general population dynamic for a large
economy with rational and nonrational traders according to the process of wealth
accumulation in asset markets. The dynamic indicates that the growth rate of
wealth accumulation drives the evolutionary process in asset markets. This en-
dogenously determined group wealth accumulation process distinguishes our evo-
lutionary model from the previous models with exogenous imitation processes.

We apply our population dynamic to examine the survival of overconfident
traders in a pairwise contest and the survival of noise traders in a playing-the-field
contest. We find that neither underconfident nor bearish sentiment can survive.
On the other hand, investors with moderate overconfidence or bullish sentiment
can survive in the long run. Furthermore, these moderately aggressive investors
may dominate the market if fundamental risk in the market is sufficiently large.
These findings provide interesting new empirical implications for the survivability
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of active fund management. Overall, our results lend support to the relevance of
the psychology of investors with respect to either overconfidence or sentiment for
the study of financial markets.

APPENDIX

To facilitate our proofs in what follows, some equilibrium concepts of the dy-
namic are in order. Say that a statex∗ ∈ 1 = {x(t) ∈ R2

+ | x1(t)+ x2(t) = 1} is a
dynamic equilibrium (a.k.a.steady state) for the dynamiċx(t), if ẋ(t)|x(t)=x∗ = 0.
Such states are steady in thatx(t) = x∗ for all t ∈ [0,∞) iff ẋ(0)|x(0)=x∗ = 0.
Say that a dynamic equilibriumx∗ ∈ 1 is asymptotically stableif it has some
open neighborhoodN(x∗) such that limt→∞ x(t) = x∗, if the initial statex(0) ∈
N(x∗) ∩1. Intuitively, the asymptotic stability requires a local pull toward the
steady state following a small perturbation, and hence all states near a dynamic
equilibrium will eventually evolve toward it.

Proof of theorem 1. Note that the homogenous profiles (1, 0) and (0, 1)
are always steady states for the dynamic in (18) and the heterogeneous profile
(a2/(a1+ a2),a1/(a1+ a2)) is an interior steady state if the two return parame-
ters,a1 anda2, have the same signs. To check the asymptotic stability, differentiate
the dynamiċx2 in (18) with respect tox2 and evaluate the partial derivative at each
steady state, respectively, as follows:

∂ ẋ2

∂x2
= −3(a1+ a2)x2

2 + 2(2a1+ a2)x2− a1; (A1)

∂ ẋ2

∂x2

∣∣∣∣
x2=0

= −a1,
∂ ẋ2

∂x2

∣∣∣∣
x2=1

= −a2, and
∂ ẋ2

∂x2

∣∣∣∣
x2= a1

a1+a2

= a1a2

a1+ a2
. (A2)

A steady state is asymptotically stable iff the partial derivative evaluated at that state
is negative. By (A2), the following results are obtained: (1, 0) is asymptotically
stable ifa1 > 0; (0, 1) is asymptotically stable ifa2 > 0; (a2/(a1+ a2),a1/(a1+
a2)) is asymptotically stable ifa1 < 0 anda2 < 0. j

The results of the proof of theorem 1 are summarized as follows:

(I) If a1 > 0 anda2 < 0, then (x1, x2) = (1, 0) is the unique asymptotically
stable equilibrium.

(II) If a1 < 0 anda2 > 0, then (x1, x2) = (0, 1) is the unique asymptotically
stable equilibrium.

(III) If a1 > 0 anda2 > 0, then there exist two asymptotically stable equi-
libria such that

lim
t→∞ x(t) =

{
(1, 0) if x2(0) ∈ [0, a1

a1+a2

)
;

(0, 1) if x2(0) ∈ ( a1
a1+a2

, 1
]
.
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(VI) If a1 < 0 anda2 < 0, then (x1, x2) = (a2/(a1+ a2),a1/(a1+ a2)) is the
unique asymptotically stable equilibrium.

Proof of theorem 2.1. By (30), if ρ∗ < 0 or 0< ρ∗ < ((1+ r )2(ρ∗2+ σ 2
ρ ))/

(2γ σ 2
ρ ), then we haveE[R2(x(t))] − E[R1(x(t))] < 0 for ∀x(t) ∈ 1 = {x(t) ∈

R2
+ | x1(t)+ x2(t) = 1}. To derive the parameter space for the second case, rear-

range and write a quadratic functionf (ρ∗) as follows:

f (ρ∗) = ρ∗2− 2γ σ 2
ρ

(1+ r )2
ρ∗ + σ 2

ρ . (A3)

A simple calculation shows that the function is greater than zero (and hence
E[R2(x(t))] − E[R1(x(t))] < 0) if either σρ ≤ (1+ r )2/γ or ρ∗ ∈ (0, ρ∗−)∪
(ρ∗+,∞), where

ρ∗− =
1

2

 2γ σ 2
ρ

(1+ r )2
−
√(

2γ σ 2
ρ

(1+ r )2

)2

− 4σ 2
ρ

 and

ρ∗+ =
1

2

 2γ σ 2
ρ

(1+ r )2
+
√(

2γ σ 2
ρ

(1+ r )2

)2

− 4σ 2
ρ

 . (A4)

Given thatE[R2(x(t))] − E[R1(x(t))] < 0, starting from any nonstationary states,
the population share of noise traders will decline to zero in the long run. Thus, the
unique asymptotically stable equilibrium is (x1, x2) = (1, 0).

On the other hand, ifσρ > (1+ r )2/γ andρ∗ ∈ (ρ∗−, ρ
∗
+), then the function

f (ρ∗) is less than zero, and hence the dynamic in (30) may have one interior
steady state, (x1, x2) = (1− µ,µ), whereµ is given byµ = ((1+ r )2(ρ∗2+ σ 2

ρ ))/
(2γρ∗σ 2

ρ ). In this case, the expected return differential,E[R2(x(t))] − E[R1(x(t))],
depends on the current population share relative to the interior steady state. If the
current noise trader share is below the interior steady state, i.e.,x2(t) < µ, then
the expected return differential is negative and the population share of the noise
traders will decline to zero in the long run. If the current noise trader share is
above the interior steady state, i.e.,x2(t) > µ, then the expected return differential
is positive and the population share of the noise traders will increase to one. Thus,
we obtain two asymptotically stable equilibria, (1, 0) and (0, 1), respectively.j

The results of the proof of theorem 2.1 are summarized as follows:

(I) If ρ∗ < 0, then (x1, x2) = (1, 0) is the unique asymptotically stable equi-
librium.

(II) If σρ ≤ (1+ r )2/γ or ρ∗ ∈ (0, ρ∗−) ∪ (ρ∗+,∞), then (x1, x2) = (1, 0) is
the unique asymptotically stable equilibrium.
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(III) If σρ > (1+ r )2/γ andρ∗ ∈ (ρ∗−, ρ
∗
+), then there exist one unique in-

terior steady state (1− µ,µ) and two asymptotically stable equilibria such that

lim
t→∞ x(t) =

{
(1, 0) if x2(0) ∈ [0, µ);

(0, 1) if x2(0) ∈ (µ, 1].

Proof of theorem 2.2. By (29),ρ∗ < 0⇒ E[R2(x(t))] − E[R1(x(t))] < 0 for
∀x(t) ∈ 1 = {x(t) ∈ R2

+ | x1(t)+ x2(t) = 1}. Hence, the dynamic in (29) only has
two steady states: (1, 0) and (0, 1). To check the asymptotic stability, differentiate
the dynamiċx2 in (29) with respect tox2 and evaluate the partial derivative at each
steady state, respectively, as follows (ignoring the constant 1/c0 without loss of
generality):

∂ ẋ2

∂x2

∣∣∣∣
x2=0

= ρ∗; (A5)

∂ ẋ2

∂x2

∣∣∣∣
x2=1

= −ρ∗ + ρ∗2+ σ 2
ρ

2γ
(

σ 2
ρ

(1+ r )2 + σ 2
ε

) = E[ R̃1,n(0, 1)]− E[ R̃2,n(0, 1)]. (A6)

A steady state is asymptotically stable iff the partial derivative evaluated at that state
is negative. Hencex(t) = (1, 0) is the unique asymptotically stable equilibrium in
category I in whichρ∗ < 0.

In category II (i.e.,ρ∗ > 0 andE[R2(x(t))] − E[R1(x(t))] > 0 for ∀x(t) ∈ 1),
the dynamic again has two steady states: (1, 0) and (0, 1). Given thatρ∗ > 0, x(t) =
(1, 0) is not asymptotically stable by (A5). On the other hand, (0, 1) is asymptoti-
cally stable iffE[ R̃2(0, 1)]− E[ R̃1(0, 1)] > 0 by (A6). This always holds in cat-
egory II by its definition. Hence,x(t) = (0, 1) is the unique asymptotically stable
equilibrium.

If ρ∗ > 0 andg > 0, thenE[ R̃2(x(t))] − E[ R̃1(x(t))] = 0 may have at most two
real rootsµL andµH , as defined in (31) and (32), for somex(t) ∈ 1\{(1, 0), (0, 1)}.
By definition, a positive real root is an interior steady state if it is bounded above
by one. Hence, there are two possibilities for the existence of the interior states:
(1) the lower rootµL is the unique interior steady state in category III for 0<
µL < 1< µH , and (2) both rootsµL andµH are interior steady states in cate-
gory IV for 0< µL < µH < 1. To check the asymptotic stability for the interior
steady states, compute

∂ ẋ2

∂x2

∣∣∣∣
x2=µ j

=
µ j (1− µ j )(ρ∗2+ σ 2

ρ )
(

σ 2
ρ

(1+ r )2 − σ 2
ε

µ2
i

)
2γ
(

µ j σ 2
ρ

(1+ r )2 + σ 2
ε

µi

)2 , wherej = L , H. (A7)

Equation (A7) indicates that an interior steady stateµ j is negative iffµ j <

(1+ r )σε/σρ, j = L , H. Given the existence of the two real roots, i.e.,g > 0,
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(31) and (32) imply the following two inequalities:

µL <
(1+ r )

√
16γ 2σ 2

ρ σ
2
ε ρ
∗2

4γ σ 2
ρ ρ
∗ = (1+ r )σε

σρ
; (A8)

µH >
(1+ r )2

(
σ 2
ρ + ρ∗2

)
4γ σ 2

ρ ρ
∗ >

(1+ r )
√

16γ 2σ 2
ρ σ

2
ε ρ
∗2

4γ σ 2
ρ ρ
∗ = (1+ r )σε

σρ
. (A9)

By (A7)–(A9), the lower rootµL is asymptotically stable, but the higher rootµH

is not. Note that (0, 1) is asymptotically stable iffE[ R̃2(0, 1)]− E[ R̃1(0, 1)] > 0
by (A6). Note also thatE[ R̃2(x(t))] − E[ R̃1(x(t))] is a convex function, given
ρ∗ > 0. Thus, a simple inspection of the convex function forx2(t) ∈ [0, 1] shows
that (1) E[ R̃2(0, 1)]− E[ R̃1(0, 1)] < 0 if there exists only one interior steady
stateµL (category III) and (2)E[ R̃2(0, 1)]− E[ R̃1(0, 1)] > 0 if there exist two
interior steady states (category IV). Hence,x(t) = (0, 1) is an asymptotically
stable equilibrium in category IV, but not in category III. Finally, given that
ρ∗ > 0, x(t) = (1, 0) is not asymptotically stable in either category III or IV by
(A5). Therefore, we obtain the desired results in Theorem 2.j

The results of the proof of theorem 2.2 are summarized as follows:

(I) If ρ∗ < 0, then (x1, x2) = (1, 0) is the unique asymptotically stable equi-
librium.

(II) If ρ∗ > 0 andE[ R̃2(x(t))] − E[ R̃1(x(t))] > 0 for ∀x(t) ∈ 1 = {x(t) ∈
R2
+ | x1(t)+ x2(t) = 1}, then (x1, x2) = (0, 1) is the unique asymptotically stable

equilibrium.
(III) If ρ∗ > 0 and 0< µL < 1< µH , then (x1, x2) = (1− µL , µL ) is the

unique asymptotically stable equilibrium.
(IV) If ρ∗ > 0 and 0< µL < µH < 1, then there exist two asymptotically

stable equilibria such that

lim
t→∞ x(t) =

{
(1− µL , µL ) if x2(0) ∈ [0, µH );

(0, 1) if x2(0) ∈ (µH , 1].
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