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Abstract
Heterogeneous beliefs are ubiquitous. Heterogeneity can, but need not, affect the pricing of

assets. In this paper I develop a measure of sentiment and show that the log-pricing kernel

can be decomposed into two stochastic processes, one pertaining to fundamentals and the

other to sentiment. Hence, prices are efficient if and only sentiment is uniformly zero. When

sentiment is nonzero, I demonstrate that heterogeneity can lead to “smile” effects both in

the graph of the kernel and in option prices, and “frown” effects in mean-variance port-

folios. Nonzero sentiment distorts the mean-variance frontier from its “efficient” position,

thereby giving rise to behavioral betas. In addition, nonzero sentiment interferes with the

expectations hypothesis of the term structure, and can affect the volatility of the return

to the market portfolio, depending on traders’ risk tolerance spectrum. I also argue that

heterogeneity can cause the representative trader to have different characteristics than the

individual traders.
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1 Introduction

A common assumption in asset pricing is that traders are homogeneous. Of course in the

real world traders differ from one another in respect to beliefs, risk tolerance, and patience.2

In this paper I use a general equilbrium framework to analyze the impact of heterogeneity

on asset pricing. I demonstrate that there are conditions where asset pricing under hetero-

geneity is dramatically different from asset pricing under homogeneity. I also demonstrate

that there are (other) conditions where asset pricing is the same under heterogeneity as

under homogeneity. In this respect, I discuss why the former conditions are more robust

than the latter.

Heterogeneity is particularly important when it comes to market efficiency. For this

reason, I develop a new variable to measure the degree of market sentiment. I selected “On

Kernels and Sentiment” as the title for this paper because the pricing kernel and sentiment

are the core concepts for understanding how asset pricing is impacted by heterogeneity.

The pricing kernel serves as the basis for the pricing of all assets. Sentiment measures

the aggregate error (in the market) that drives a wedge between price and fundamental

value. The central result in the paper concerns the relationship between the two concepts.

The result states that the log-kernel can be decomposed into two stochastic processes, one

pertaining to fundamentals and the other to sentiment. Note that the result implies that

prices are efficient if and only if sentiment is always zero.3 In other words, heterogeneity

is compatible with market efficiency as long as the heterogeneity is associated with zero

sentiment.

When sentiment is nonzero, heterogeneity affects the term structure of interest

rates, the pricing of options, and the returns to both mean-variance efficient portfolios and

the market portfolio. I show why nonzero sentiment:

• induces stochastic volatility into the process governing interest rates, and interferes

with the expectations hypothesis of the term structure;

• induces volatility “smiles” and stochastic volatility into option pricing, thereby

preventing options from being priced by Black-Scholes in equilibrium;

• induces a “frown” effect into the return to mean-variance efficient portfolios, mirroring
2An interesting illustration of the heterogeneous beliefs involves the contrasting views of Glassman and

Hassett (1999) who wrote Dow 36,000, and Shiller (2000) who wrote Irrational Exuberance.
3That is, the probability that sentiment is nonzero at some date is zero.
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“smile” effects in option pricing, thereby affecting the character of beta; and

• may or may not affect the return distribution to the market portfolio, depending

on traders’ risk tolerances.

Much of the approach in the paper is new, especially: the formal treatment of

sentiment, the decomposition of the log-kernel, and the associated implications for option

pricing, term structure of interest rates, mean-variance efficient frontier, and return on the

market portfolio. I note that some of my results serve to extend the analysis in Shefrin-

Statman (1994), that is based on log-utility.

Shefrin-Statman (1994) show that heterogeneity does not always lead to inefficient

prices because instead of distorting prices, traders’ errors can be self-canceling. They estab-

lish an efficiency condition that involves two terms: (1) the mean discounted trader error;

and (2) the covariance between discounted errors and wealth. In their model, prices are

efficient if and only if the wealth-scaled mean error4 and error-wealth covariance sum to

zero. Consider two of the implications attached to the Shefrin-Statman efficiency condi-

tion. First, when individual errors (1) average to zero across the trader population; and

(2) are uncorrelated with wealth, then prices are efficient. One of the strongest empirical

implications stemming from the behavioral decision literature is that individual errors are

systematic, meaning that the mean trader error is nonzero. Second, the Shefrin-Statman ef-

ficiency condition tells us that prices can be inefficient even when errors are nonsystematic.

This occurs when the mean error is zero, but the error-wealth covariance is nonzero. Note

that a nonzero error-wealth covariance implies that the errors of wealthier traders count for

more than the errors of less wealthy traders.

In most of the paper I intentionally leave unspecified the exact errors commited

by individual traders. Instead, I focus on effects stemming from heterogeneity alone. There

are two reasons for doing so. First, as I indicated in the preceding paragraph, heterogeneity

itself may be the cause of mispricing. Second, in the behavioral decision studies that

document particular errors and biases, those errors and biases are group averages. They do

not afflict each and every individual. Many subjects in these studies do not even commit the

particular error under investigation. In other words, behavioral studies feature considerable

heterogeneity in subjects’ responses. I contend that it is important to have a theory general

enough to accommodate individual differences in errors. The main results in the paper5 hold
4The mean error is multiplied by market wealth.
5Such as those pertaining to the decomposition of the kernel.
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irrespective of the precise errors individuals make. And these results are hardly nullified by

sharpening the assumptions to accommodate specific types of errors. Indeed, at the end of

the paper, I discuss the effect of incorporating specific behavioral features into the model.

There is a message in this paper for those who use representative trader models of

asset pricing, whether rationally-based pricing models or behaviorally-based models. Those

who use a rationally-based representative trader approach tend to assume a representative

trader whose features resemble some unspecified average individual trader. Pertinent ex-

amples include Lucas (1978), Mehra-Prescott (1985), and Whitelaw (2000). Of particular

note is Bates’ (1996) survey article about option pricing. Bates points out that when both

volatility and interest rates are stochastic, options cannot generally be priced using the arbi-

trage method that underlies Black-Scholes. Rather, an equilbrium method must instead be

used, where the method Bates describes centers on a representative trader: See section 2 of

his article. Another example is the option pricing model developed by David and Veronesi

(1999). Their model features a representative trader who learns about the true value of the

drift term associated with the fundamental uncertainty governing the system.

My point is that in a heterogeneous trader model, the representative trader does

not typically resemble any of the individual traders. The aggregation process is more

complex than commonly assumed. For example, aggregating traders with constant relative

risk aversion utility functions does not always lead the representative trader to exhibit

constant relative risk aversion. And aggregating traders whose beliefs are log-normal does

not always lead the representative trader to hold log-normal beliefs. Hence, researchers

who rely on representative trader models may succumb to the behavioral bias known as

representativeness.

Those who use a behaviorally based representative trader approach tend to assume

a representative trader who commits one or more of the standard errors identified in the

behavioral decision literature. The articles by Barberis, Shleifer, and Vishny (1998) and

Daniel, Hirshleifer, Subrahmanyan (1998) are typical in their focus on the mean error. But

in a world of heterogeneous errors, that being the world we live in, the collective error in

the market need not conform with any particular error identified in the behavioral decision

literature. In this respect, my treatment of sentiment is different from the approach taken

in these articles.

I have organized the paper as follows. In Section 2, I set the stage with a short

discussion about heterogenous beliefs. I briefly discuss instances of heterogeneus beliefs in
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both behavioral studies and in practice, following which I review the asset pricing literature

on heterogenity. My strategy for the remainder of the paper is twofold, first highlight-

ing the main features in the Shefrin-Statman’s (1994) log-utility framework, and second,

generalizing their results.

In sections 3 through 5, I use a standard binomial option pricing model to describe

the main results in Shefrin-Statman (1994). By invoking a limit argument to achieve a

continuous time diffusion process, I am able to show when and why Black-Scholes breaks

down: by this I mean when and why heterogeneity causes a difference between equilibrium

option prices and their corresponding Black-Scholes values.

Sections 6 through 13 are the heart of the paper, where I describe the general

framework (section 6), formally define sentiment (sections 7 and 8), establish the log-kernel

decomposition theorem (section 8), discuss robustness issues involving my choice of utility

function (section 9), and develop the implications of nonzero sentiment for the returns

to mean-variance efficient portfolios (section 10), interest rates (section 11), option prices

(section 12), and the market portfolio (section 13).

In section 14, I discuss specific issues associated with phenomena described in the

behavioral decision literature, and provide a short conclusion in section 15.

2 Heterogeneous Beliefs

One of the most striking features in psychological studies of prediction in the heuristics and

biases literature is the wide dispersion of beliefs. A good example is the work of De Bondt

(1993) on trend extrapolation and overconfidence in predicting the future value of the S&P

500. One way of measuring the extent of heterogeneity is by measuring the coefficient of

variation across forecasts, that is the standard deviation of the different forecasts, divided

by the mean forecast of the group. I have replicated De Bondt’s study with two separate

groups of MBA students and one group of investment professionals.6 For students the

coefficient of variation is about 12.8 percent, and for investment professionals it is a little

lower at 11.1 percent. Hence there is considerable heterogeneity within groups, but little

difference in the degree of heterogeneity between groups.
6The investment professionals were portfolio managers, security analysts, and administrative staff mem-

bers at a hedge fund. De Bondt does not report the coefficient of variation, though the degree of heterogeneity

in his original results can be seen from the t- statistics he reports.
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Consider an instance of heterogeneity from a well-known setting that does not

stem from an academic study. Starting in 1983, the television program Wall $treet Week

with Louis Rukeyser has been collecting twelve-month forecasts from panelists for the year-

end closing value of the Dow Jones Industrial Average. I have found that the mean annual

coefficient of variation over the period 1983 through 1999 is 8.9 percent.7 The intertemporal

standard deviation, which indicates the extent of variation in the dispersion of forecasts

over time, is 2.6 percent.8 This is especially interesting, given that the composition of

panelists is quite stable from year to year. The highest value for the coefficient of variation

is 16 percent, and occurred in connection with the forecast for year-end 1988. In other

words, disagreement was highest for the prediction made two months after the 1987 crash.

Depending on the year, 17 to 27 panelists participated in the Wall $treet Week survey.9

Theoretical work on heterogeneity goes back several years and includes Rubin-

stein (1973), Jaffee and Winkler (1976), Figlewski (1978, 1983), Feiger (1978), Mayshar

(1983), Shefrin (1984), Dumas (1989), Harris and Raviv (1993), Benninga and Mayshar

(1993, 1997), Detemple and Murthy (1994), Shefrin and Statman (1994), Huang (1996),

Basak (2000), Kurz (1997), and Carr and Madan (1997). The articles by Jaffee-Winkler,

Figlewski, Feiger, and Shefrin study partial equilibrium models where traders hold hetero-

geneous beliefs, but share the same tolerance for risk. Mayshar (1983) and Dumas (1989)

focus instead on a two-trader general equilibrium model where the traders hold the same
7The data is available from Wall $treet Week.
8Here is another example. In December 1998, BusinessWeek published the forecasts of 49 Wall Street

strategists and analysts for the year-end 1999 values of the Dow Jones Industrial Average, S&P 500, and

Nasdaq Composite. The coefficient of variation across the 49 forecasts, expressed in percentage terms, are

17.0, 13.5, and 17.8 respectively. This dataset also includes six-month forecasts. Interestingly, the coefficient

of variation is smaller for the shorter forecast horizon (10 percent). A similar feature holds in the Livingston

data set that was initially compiled by Philadelphia Enquirer columnist Joseph Livingston, and is now

maintained by the Federal Reserve Bank of Philadelphia. The Livingston data set contains forecasts for

several variables, such as interest rates and the CPI. The CPI is a less volatile than a stock index, and its

forecasts feature smaller coefficients of variation. It is interesting that the coefficient of variation seems to

be similar across the range of cases, De Bondt’s study, BusinessWeek, and Wall $treet Week with Louis

Rukeyser.
9In replicating the Wall $treet Week prediction exercises with MBA students, using the actual percentage

change in the Dow, I obtained a mean coefficient of variation of 12 percent, with a standard deviation over

time of 3.3 percent, not that different from the 9 percent actual mean and 2.5 percent actual standard

deviation. Again, there is considerable heterogeneity within groups, but the differences between groups are

small.
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beliefs, but have different tolerances for risk. Benninga and Mayshar (1993, 1997) extend

the Dumas approach to many traders, and focus on how the representative trader serves

to aggregate the risk tolerance parameters of the individual traders. Their 1997 paper ap-

plies their methodology to analyze the impact of heterogeneity on option prices. Detemple

and Murthy develop a continuous time, incomplete market, logarithmic utility model in

which traders hold differential beliefs. They analyze how a representative trader aggregates

the beliefs of the individual traders. Shefrin and Statman (1994) analyze a model similar

to that of Detemple and Murthy, but where markets are complete and time is discrete.

There is a parallel literature in noisy rational expectations models that also features hetero-

geneity. As I discuss below, because these models assume constant absolute risk aversion

(CARA-utility), there is no germane role for the error-wealth covariance. However, the noisy

rational expectations model has provided important insights into the effects stemming from

overconfidence (Odean, 1998).10

3 A General Equilbrium Binomial Example

In this section I introduce the basic structure of my model through a familiar framework,

the binomial option pricing model. This will enable me to highlight the main results in

Shefrin and Statman (1994) upon whose analysis I build.

Consider a binomial option pricing model, where the price of a security Z unfolds

over successive dates, t = 0, 1, 2, · · · , T . Let qz,t be the price of Z at date t. At date t + 1,

the price of Z will be either uqz,t, where u > 1, or dqz,t, where d = 1/u < 1. The probability

attached to an up-move u is denoted Pu. In the standard binomial option pricing model

developed by Cox, Ross, and Rubinstein (1979), the interest rate i is given, and the price

of a European call option on a non-dividend paying stock is independent of the value taken
10All models make simplifying assumptions and therefore feature weaknesses. For example, the model

I use features complete markets rather than the incomplete markets studied by Detemple and Murthy. I

restrict attention to a specific family of utility functions rather than deal with the general formulation used

by Basak (2000) in his work on representative traders. I assume that every trader’s utility function features

constant relative risk aversion (CRRA), though there may be differences in the degree of risk aversion across

traders. This leads the representative trader’s utility function to have a generalized power function form,

a feature that builds on a result in Rubinstein (1976) that the representative trader has a CRRA utility

function. And I impose a finite time horizon instead of allowing for an infinite horizon. These restrictions

bring some cost in terms of generality. But the restrictions also lead to a model where sentiment can be

clearly defined, is easily understood, and enters the pricing kernel in a straightforward manner.
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by Pu. This is because the state prices Quand Qd associated with date 1 are determined by

u, d, and i according to:

Qu = [(i− d)/(u− d)]/i

Qd = [(u− i)/(u− d)]/i

The state prices for subsequent dates have the form C(t, n)Qn
uQt−n

d , where n is the number

of up-moves that occur in t periods, and C(t, n) is the associated binomial coefficient.

To fix ideas, let u = 1.05, and Pu = 0.7. Let the interest rate be 1.87% so that

the gross interest rate is given by i = 1.0187. Consider a non-dividend paying stock whose

price at date 0 is 4.00, and a European call option on this stock that expires at t = 2 and

has an exercise price K = 3.80. Figure 1 shows that the date 0 price of this option is equal

to 0.355.

In the binomial option pricing model, option prices are independent of Pu, the

actual probability, or more correctly traders’ beliefs about the actual probability. This

property carries over in the limit, as the binomial option pricing formula converges to the

Black-Scholes formula. See Cox, Ross, and Rubinstein (1979). This raises the question of

whether belief heterogeneity is even relevant for option pricing.

The standard binomial option pricing model is a partial equilbrium framework,

because the interest rate is given. In contrast, the model in Shefrin-Statman (1994) is

a general equilbrium framework where the interest rate is endogenously determined as a

function of both u and Pu. This dependence is important, because it provides a link from

Pu to option prices. That is, unlike the partial equilbrium framework where option prices

are independent of Pu, in the general equilibrium framework option prices vary with Pu,

through their impact on the interest rate.

To show how the Shefrin-Statman (1994) framework relates to the standard bino-

mial option pricing model, consider a special case of Shefrin-Statman (1994) where u = 1.05,

Pu = 0.7, i = 1.0187, and T = 5.11 Assume that there is a single physical asset that pro-

duces a single consumption good at each date. The amount of the consumption available

for consumption at date 0 is 1 unit. Thereafter, the amount of consumption will grow

stochastically from date to date, either at rate u (with probability Pu) or at rate d (with

probability 1 − Pu.) The market portfolio is a security that pays the value of aggregate

consumption at each date.
11Figure 1 displays the first four dates.
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There are two traders in the model. These two traders initially hold portfolios

consisting exclusively of the market portfolio. By assumption, each trader initially holds

one half of the market portfolio. There is also a risk-free security available for trade at each

date. Because of the binomial character of uncertainty, these two securities will be sufficient

to complete the market.

Both traders are assumed to have additively separable preferences, logarithmic

utility, and discount factors equal to unity (zero impatience). They also hold beliefs about

the branch probability in the binomial tree. Trader 1 assumes that the value of the branch

probability Pu is P1,u, while trader 2 believes the value to be P2,u. Each trader seeks to

maximize subjective expected utility subject to the condition that the present value of

lifetime consumption be equal to initial wealth. The single budget constraint here stems

from markets being complete.

For the moment, consider the case of homogenous beliefs, where P1,u = P2,u =

Pu = 0.7. There are two key equations from Shefrin-Statman (1994) that are central here,

equations (4) and (7).12 Equation (4) implies that in equilibrium, Qu = Pu/u, and equation

(7) implies that

i = [Pu/u + (1− Pu)/d]−1

Given the values of u and Pu assumed above, it is easily verified that i = 1.0187. To obtain

the counterpart of the non-dividend paying stock, consider a security Z that is defined so

that it has the same (dividend) payoff as the market portfolio for the four dates 2 through

5 inclusive, but pays no dividend prior to date 2. By constructing the state prices from Qu,

it is easily verified that this security has a price of 4.00 at date 0, and that its price either

grows by a factor of u or d in every period before the option expiration date. Therefore,

options in the general equilbrium version of the example can be priced using the standard

binomial method described above.

4 Heterogeneous Beliefs, Efficient Prices, and Interest Rate

Volatility

Shefrin and Statman (1994) develop their framework to explore the implications of hetero-

geneous beliefs on equilibrium prices. On pages 326 and 327 of their (1994) article, they
12I generalize these equations below, in theorems 1 and 4 of this paper.
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establish that equilbrium prices can be characterized through the beliefs of a representa-

tive trader R, whose tree probabilities are a convex combination of the tree probabilities

of the individual traders, where the weights are given by relative wealth. Because the two

traders in this example have the same wealth at date 0, the representative trader attaches

probability

PR,u = (P1,u + P2,u)/2

to the occurrence of an up-move at the end of date 0. The probability that the representative

trader attaches at date 0 to two successive up moves, occuring at the end of date 0 and the

end of date 1 respectively, is:

PR,u(2) = (P 2
1,u + P 2

2,u)/2

which is the (relative wealth-weighted) average of the two traders’ binomial probabilities

attached to the node in question. Note that the representative trader does not attach a

probability to this node using the equation:

P 2
R,u = ((P1,u + P2,u)/2)2 = PR,u(2)/2 + P1,uP2,u/4

In order to illustrate the result just described, let P1,u = 0.8 and P2,u = 0.6, but

maintain the assumption that the objective probability Pu = 0.7. In this case it will turn

out that the one-step probability PR,u, the simple average of 0.8 and 0.6, will actually equal

the objective probability Pu = 0.7. However, such equality will not occur for the case

of the n−step probabilities, for n > 1. For example the representative trader will attach

probability 0.50 to the occurrence of two successive up-moves beginning at date 0, whereas

the objective probability of this event is actually 0.72 = 0.49. Indeed, the difference in value

between these values implies a fat tail in the representative trader’s probability density

function. See figure 2 which provides an illustration of the tree.

Lying at the heart of all the issues I discuss in this paper is the question of when

heterogeneity causes prices to be inefficient. Shefrin-Statman (1994) establish a necessary

and sufficient condition for efficient prices in their model, (theorem 2, p. 329.) In the

context of the current example, their theorem stipulates that prices are efficient if and only

if the relative wealth-weighted average of the trader probability errors, a dot product, is zero

at every node.13 In the previous example with heterogeneous beliefs, it is straightforward to

see that this weighted average is zero for the date 1 nodes. The error in the probability that
13Since the probability density function of the representative trader is a wealth weighted convex combi-
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trader 1 attaches to an up-move at date 1 is 0.8 − 0.7 = 0.1. Similarly, the corresponding

error that trader 2 attaches to the same event is 0.6 − 0.7 = −0.1. Since both traders

have relative wealth levels equal to 1/2, the relative wealth-weighed error in the market is

(0.1 − 0.1)/2, which equals zero. However, the weighted average is nonzero for nodes that

occur later in the tree. For instance, for two successive up-moves leading to date 2, trader

1’s error is 0.025, whereas trader 2’s error is −0.022, so the weighted sum is 0.0015.

Theorem 2 from Shefrin-Statman (1994) is fundamental for understanding how het-

erogeneous beliefs impact asset pricing. The theorem also provides an alternative (equiva-

lent) necessary and sufficient condition for efficient prices, one that yields additional insight.

This alternative condition is based on two terms. The first term is the average trader error.

When the average trader error is zero, then traders are not subject to systematic biases, even

though individual traders do commit errors. The second term is the covariance between

traders’ errors and their wealth levels. When this covariance is zero, then trader errors

are distributed uniformly across the trading population, rather than being concentrated.

Notice that this is the case at date 0: since the two traders have equal intial wealth, there

is no variation in wealth, and hence zero covariation with errors.

Theorem 2 in Shefrin-Statman (1994) implies that there are two main reasons why

prices can be inefficient, at least in their model. First, traders may commit systematic errors,

thereby leading the average trader error to be nonzero. Second, prices can be inefficient

even though the average error may be nonzero, because errors are concentrated. The error

of a wealthy trader can exert a greater impact on market prices than less wealthy traders.

Formally, what theorem 2 states is that prices are efficient if and only if the sum of the

error-wealth covariance, and the wealth-normalized mean trader error is zero.14

One of the most pronounced differences between the character of asset pricing

in the homogeneous beliefs binomial model, and the heterogenous beliefs binomial model,

concerns interest rates. Both Shefrin-Statman (1994) and Detemple-Murthy (1994) analyze

the impact that heterogeneity exerts on the short-term interest rate. Consider the case when

nation of the density functions of the individual traders, the aggregate error is a wealth weighted convex

combination of the individual errors. That is why market efficiency corresponds to the dot products being

zero, node by node. Theorem 2 is actually stated in terms of the dot product of trader errors and absolute

wealth, rather than relative wealth. The former dot product is equal to the product of the latter dot product

and total market wealth.
14The theorem is actually stated in terms of discounted errors; however, discounting is not germane in

this example. The mean trader error is normalized by multiplying it by total market wealth.
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homogenous beliefs lead the short-term rate to be constant over time. Shefrin-Statman

emphasize that when their dot product efficiency condition fails, heterogeneity causes the

short-term interest rate to be stochastic. To see why this is so, consider four cases. In three

of these cases, the two traders agree about the value of Pu. In the first case, both correctly

believe its value to be 0.7. In the second case, both believe its value to be 0.8. In the third

case, both believe its value to be 0.6. And in the fourth case, trader 1 believes its value to

be 0.8 while trader 2 believes its value to be 0.6. Some computation shows that the interest

rate in case 1 is a constant15 1.87%, in case 2 it is a constant 2.9%, while in case 3 it is a

constant 0.87%.

And what will the interest rate be in case 4, where the two traders disagree? To

answer this question, compute the discount factors associated with each of the interest

rates above. For 2.9%, the one period discount factor (bond price) is 1/1.029 = 0.9719. For

0.87%, the discount rate is 0.9914. The discount rate in case 4 will be a convex combination

of the discount factors 0.9719 and 0.9914, with weights given by relative wealth.

Why? Recall that the probability beliefs of the representative trader are a relative

wealth-weighted convex combination of the beliefs of the individual trader. In addition,

equation (4) of Shefrin-Statman (1994) indicates that the equilibrium value of a state price

is a function of a ratio, the ratio of the representative trader’s probability to the (gross

cumulative) consumption growth rate. In combination, these two features imply that in

equilbrium, asset prices generally can be expressed as weighted sums of asset prices derived

from corresponding homogeneous cases.

At date 0, the relative wealth levels are 0.5, so the equilibrium one-period interest

rate is 1.87%, the same value as in case 1. However, because the traders disagree about the

value of Pu, they bet against each other on the date 0 market. Trader 1 is more optimistic

than trader 2. As a result, trader 1 bets more aggressively on the occurrence of an up-move

leading to date 1 than trader 2. If an up-move does occur in the first period, relative wealth

will shift from trader 2 to trader 1. As a result, trader 1’s beliefs will exert more of an

impact on pricing on the date 1 market, and the interest rate will climb above 1.87% (in

the direction of 2.89%). In this specific example, an up-move in the first period results in

trader 1 holding 57% of overall wealth, and trader 2 holding the residual. In consequence,

the one-period interest rate at date 1 rises from 1.87% to 2.01%. I note that if we condition

on an up-move at the end of date 0, then the conditional error-wealth covariance terms will
15Constant means nonstochastic and time-invariant.
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no longer be uniformly zero along the tree.16

In the above discussion, I have focused on a case where heterogeneity interferes

with market efficiency. Consider next a case where this is not so, where prices are efficient,

even though traders hold heterogeneous beliefs. Keep in mind that prices are efficient

when the relative wealth-weighted sum of trader errors is zero. In addition, if the objective

stochastic process is I.I.D.,17 interest rates will be constant over time. To demonstrate a

case with these features, consider a modification to the previous example.18

At date 0, let trader 2 attach a probability of 0.34 to two successive up-moves,

instead of 0.36. With this modification, the two traders’ errors will cancel themselves,

at least for this node. Indeed, for any node, we can always solve for the value of trader

2’s error that would cancel that of trader 1. Such a solution will lead to efficient prices.

Shefrin-Statman call this a knife-edge case that occurs when the error-wealth covariance

has the same absolute value, but opposite sign, as the product of the average error and

total wealth.19 Readers should also be aware that the knife-edge case can feature perverse

probability revisions. For instance, the probability that trader 2 attaches to the second up-

move, conditional on the first, is 57%, less than the value of 60% associated with the prior

transition.20 Indeed, along the branch of successive up-moves in the modified example,

trader 2 will continually reduce the conditional probability he attaches to the next up-

move.21

16Uniformly zero means zero at every node in the tree.
17Indendently and identically distributed.
18The modification is based on the discussion on page 335, Shefrin-Statman (1994).
19In the numerical example described in this paragraph, the average error and error-wealth covariance are

both zero at date 0. But if we condition on nodes at later dates, both become nonzero, with equal absolute

values and opposite signs.
20This occurs because trader 2’s error needs to be even more pronounced in order to offset the wealth shift

that occurs in the wake of the realization at the end of date 0. In addition, the branch probabilities asso-

ciated with self-cancelling errors are highly node-dependent. Hence in general, they cannot be determined

independently of wealth.
21That is, the direction of trader 2’s associated probability revision is opposite to the frequency with which

the up-move state occurs, conforming with the error known as “gambler’s fallacy.”
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5 Heterogeneous Beliefs and Black-Scholes

In a general equilibrium framework, option prices reflect the beliefs of traders. Consider

whether this feature has any implications for whether the Black-Scholes formula coincides

with equilibrium option prices. Specifically, does heterogeneity cause the equilibrium values

of options to differ from their corresponding Black-Scholes values? The answer to this

question is yes, but only under the particular conditions I describe in the next paragraph.

When the efficiency condition in theorem 2 of Shefrin-Statman (1994) holds, het-

erogeneity has the same pricing implications as homogeneity. Hence, if equilibrium option

prices conform with Black-Scholes under homogeneous beliefs, they will also conform with

Black-Scholes under heterogeneous beliefs. However, consider what happens in the binomial

framework when the Shefrin-Statman efficiency condition fails, no matter what objective

value of Pu is selected. In this case, no set of homogeneous beliefs lead to the same prices

as occur under heterogeneus beliefs. As I show below, this has important implications for

Black-Scholes.

In the previous section, I explained why heterogeneity causes the short-term inter-

est rate to be volatile. In turn, the volatility of short-term interest rates implies that the

one-period conditional state prices do not remain invariant over time. Notably, this dis-

rupts the usual limiting argument developed by Cox, Ross, and Rubinstein (1979), where

the Black-Scholes pricing equation is achieved as a limiting case of the binomial option

pricing formula. Put another way, heterogeity can prevent the conditions necessary for

Black-Scholes pricing from holding.22

In this section, I extend the example discussed in the preceding section to discuss

how options are priced as the discrete model converges to a continuous time diffusion process.

I demonstrate that in the example, equilibium option prices are not generally given by the

Black-Scholes formula. I also show that equilibrium option prices display volatility “smile”

effects. Moreover, the smile pattern for call options need not be the same as the smile
22Heterogeneous beliefs do not prevent the option from being priced by arbitrage. However, the binomial

distribution for state prices that gets used in the standard binomial option pricing model does not apply. The

binomial property will fail because the state prices in the standard framework stay the same over time, but

under heterogeneous beliefs, they vary. And remember, Black-Scholes emerges from the binomial framework

because by the central limit theorem the binomial distribution converges to the normal. Heterogeneous

beliefs will stand in the way of that argument when we seek to apply the central limit theorem in the

manner of Cox, Ross, and Rubinstein (1979): see the middle of page 252 of their article.
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pattern for put options.

The Black-Scholes formula CBS for the price of a call option is:

CBS(S, K, σ, t, r) = SN(d1)−Ke−rtN(d2) (1)

where

d1 = [ln(S/K) + (r + σ2/2)t]/σ
√

t

d2 = d1 − σ
√

t

In the usual notation, S stands for the intial price of the asset underlying the

call option, and that is how I use it in this section.23 K is the strike price, σ denotes the

return standard deviation of the underlying asset, t is the time to expiration, and r is the

continuous compounding rate of interest.

Consider what happens when we follow the standard procedure of achieving a

continuous time framework as a limit of the discrete binomial model. I begin with the

standard parameterization of u, d, the (gross) interest rate i and its associated continuously

compounded rate r, and branch probability p = Pu.

u = eσ
√

t

d = 1/u

i = er∆t

p = [eµ∆t − d]/(u− d)

n, the number of stages in the binomial process, is set equal to 1/∆t, where ∆t is the length

of time in a single stage of the binomial process. Notice that u, d, i, and p are implicitly

functions of n, through their dependence on ∆t.

The argument presented by Cox, Ross, and Rubinstein (1979) implies that for

fixed µ, σ and r, if we set ∆t = 1/n, and let n go to infinity, then the return distribution

associated with the limiting binomial process converges to a lognormal, and the binomial

call option pricing formula converges to CBS , the Black-Scholes formula. In my example,

heterogeneous beliefs lead the short-term rate i to be stochastic, rather than fixed. This is

why the limiting argument that leads to Black-Scholes breaks down.
23Elsewhere in the paper, I use qz for the initial price, and use S as a symbol for the number of states

that can occur at any date.
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There is still a limiting argument to be made. The model developed by Detemple

and Murthy (1994) is a continuous time counterpart to the discrete time version in Shefrin-

Statman (1994). However, the continuous time version need not feature options being

priced by Black-Scholes. Recall that in the previous section, I mentioned that one can price

all assets by taking a convex combination of two components. The first component is the

price that would emerge if both agents accepted P1,u as the branch probability. The second

component is the option price that would emerge if both agents accepted P2,u as the branch

probability. This implies that in continuous time, a European option on a non-dividend

paying stock, can be priced as a convex combination of Black-Scholes functions. And that

generally produces a different value from value taken by CBS .

How does the argument work? Begin with two values for µ, µ1 and µ2. Then

define two branch probabilities

p1 = [eµ1∆t − d]/(u− d)

p2 = [eµ2∆t − d]/(u− d)

Develop two limiting processes, one corresponding to µ1 and the other correspond-

ing to µ2. These will be limits of general equilibrium binomial frameworks where the interest

rates will be endogenous. This will give rise to two different instantaneous interest rates,

r1 and r2, one to be used in a Black-Scholes homogeneous belief economy corresponding to

µ1 and the other in a homogeneous belief Black-Scholes economy corresponding to µ2. At

t = 0, in the limit, the option can be priced as a weighted average of the two Black-Scholes

values.

The preceding argument implies that in the limiting form of the previous binomial

example, the price of a call option at the initial date converges to:

Ceq = [CBS(S, K, σ, t, r1) + CBS(S,K, σ, t, r2)]/2

In general, the components of the above expression will be weighted by relative wealth.

However, in my example, initial wealth levels are assumed equal for the two traders.24

A convex combination of Black-Scholes functions, where each function uses a dif-

ferent interest rate, will not typically lead to Black-Scholes pricing based on the equilibrium
24I want to emphasize that this pricing feature is part of both the discrete framework developed by Shefrin-

Statman (1994) and the continuous time framework developed by Detemple-Murthy (1994). Neither article

makes the preceding point about option prices explicitly, but the result follows directly from both.
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instantaneous interest rate in the heterogeneous beliefs economy. That is, stochastic interest

rates are as much a part of the continuous time framework as the discrete time framework.

Consider whether the equilibrium price for options will be Black-Scholes. To ad-

dress this question, focus on a stock that pays no dividends, whose return is lognormally

distributed, and whose return standard deviation is 9.76%. Let the current value of the

stock be 4.00. Suppose that we focus attention upon call options on this stock that expire

in one year. Suppose further that there are two traders: trader 1 believes that µ1 = 5.95%,

and trader 2 believes that µ2 = 1.95%.

Were the beliefs of trader 1 to be held by both traders, the equilibrium value of r

would be 5%. This can be seen by computing the branch probability p, and solving out the

binomial model to obtain i, from which the continuous compounding rate r can be inferred.

In this case, meaning homogeneous beliefs where µ = 5.95%, Black-Scholes can be used to

price all European options on the stock. For example, the call option with an exercise price

of 3.75 would be priced at CBS(4, 3.75, .0976, 1, .05) = 0.455.

However, traders disagree about the expected return on the stock. If both traders

held the beliefs of trader 2, the equilibrium value of r would be 1%. In this case, the call op-

tion with exercise price 3.75 would have a Black-Scholes value of CBS(4, 3.75, .0976, 1, .01) =

0.355.

In view of the preceding argument, the instantaneous interest rate at t = 0 will

be obtained as follows. To find the equilibrium value of r, set e−rdt equal to the average of

the discount terms e−r1dt and e−r2dt and let dt approach zero. By invoking the Maclaurin

series ex = 1 + x + x2/2! + · · ·, we can conclude that r = (r1 + r2)/2. This implies that the

equilibrium value of r will be 3%.

The equilibrium value of the call option will be Ceq = 0.395, the average of

CBS(S, K, σ, t, r1) and CBS(S, K, σ, t, r2).

We can certainly evaluate the Black-Scholes value CBS for the above call option,

since we know the values of its arguments, those being the stock price, exercise price, re-

turn standard deviation, expiration period, and r (3%). If we do this, we will obtain a

Black-Scholes value of CBS(4, 3.75, .0976, 1, .03) = 0.394–close to, but not the same as, the

equilibrium value of 0.395. Note that this difference does not present an arbitrage oppor-

tunity because it is the equilibrium price that is consistent with the absence of arbitrage

opportunities, not the Black-Scholes formula that is predicated on spanning under time
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invariant interest rates.

Consider an example with more extreme values than those discussed above. Specifi-

cally, let µ1 = 59% and µ2 = −41%. These values lead r1 = 50%, r2 = −50%, and req = 0%.

In addition, let σ = 30%.25

Figure 3a shows how the four call option prices discussed in this example vary as a

function of K. The top curve in figure 3a pertains to the case r1 = 50%, while the bottom

curve pertains to the case r2 = −50%. The curves in the middle are for the equilibrium

option prices (solid curve), and Black- Scholes prices (dashed curve). Figure 3b provides

another view of how the difference between the equilibrium call option price and Black-

Scholes price varies as a function of the exercise price K. Notice that the pattern is cyclical,

and is negative for low values of K.

The Black-Scholes formula for the price of a put option is:

PBS(S, K, σ, t, r) = Ke−rtN(−d2)− SN(−d1)

The equilibrium price of a put option can be obtained in the same manner as a call option,

with an analogous expression

Peq = [PBS(S, K, σ, t, r1) + PBS(S,K, σ, t, r2)]/2

Figures 4a and 4b are the counterparts to figures 3a and 3b.

Consider what happens when, for an interval of exercise prices, we infer the implied

Black-Scholes volatilities from the equilibrium prices of options. To do so, we solve

CBS(4.00,K, σ, 1, .03) = Ceq

and

PBS(4.00,K, σ, 1, .03) = Peq

for σ as implicit functions of K. Figure 5 illustrates the nature of the volatility patterns

associated with these implicit functions.

Notice several features about the volatility patterns. First, the implied volatilities

are different for calls than for puts. Second, neither pattern is flat.26 In a world where
25The choice of extreme values only serves to make the underlying relationships more salient. Moreover,

although it is not usual to discuss negative interest rates in option pricing models, negative interest rates

are consistent with the Black-Scholes framework.
26Although Figure 5 may not illustrate the “U-shape” that led to the term “smile,” a smile is now generally

understood to mean not-flat.
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Black-Scholes holds, both curves would coincide with one another and be flat. Third, the

implied volatility lies above the actual volatility for most of the range, including the case

when options are at-the-money. Fourth, the implied volatility may be undefined at low

exercise prices, particularly in the case of call options.

The final topic I discuss in this section is stochastic volatility. In the general

equilibrium binomial example above, heterogeneity alters the the representative trader’s

probability density, which in turn alters the return standard deviation of the asset underlying

the option. Note that this is the only variable that causes the return standard deviation to

vary because the price of the asset at any node is invariant to traders’ probability beliefs.

At the same time, let me note that in the above binomial limit, volatility becomes constant.

This is best seen by considering what happens in the limiting process that leads the binomial

process to converge to a continuous time diffusion process. The analysis in Cox, Ross, and

Rubinstein (1979) implies that the branch probabilities Pu and Qu both converge to 1/2

in the limit (p. 249). This implies that there is little room for the representative trader’s

branch probabilities to move during a short interval. Hence in the limit, u alone determines

volatility. But since the value of u is fixed at each n, volatility is virtually constant for large

n. Hence volatility is constant in the limit as the binomial process converges to a diffusion

process. This means that in my example, the failure of Black-Scholes stems entirely from

stochastic interest rates. However, in the general multinomial framework I develop below,

the limiting diffusion process can feature stochastic volatility.

6 The General Framework

The model in Shefrin and Statman (1994) is based on log-utility. In the discrete time

example discussed in the previous sections, a further restriction was added, namely a bi-

nomial structure. In this section, I present the model to be used in the remainder of the

paper. This model generalizes the log-utility assumption to the more general condition of

CRRA-utility, and generalizes the binomial condition described earlier to any finite discrete

stochastic process. In the discussion below, heterogeneity refers not only to beliefs, but to

risk tolerance and impatience as well.

Consider a financial market with H individual traders. Time is discrete, with a

set of dates indexed t = 0, 1, 2, · · · , T . At the beginning of each date, new information s is

revealed. Call s a state, and assume that it belongs to a finite set S = {si}. The binomial
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case occurs when S has two elements. Let st ∈ S denote the state revealed at date t. The

public information at the beginning of t is denoted by the trajectory xt = (s0, s1, · · · , st).

That is, uncertainty unfolds according to a tree whose nodes are the date event pairs {xt}.
Let Π(xT ) denote the objective probability attached to the occurrence of xT . I assume

that the probability attached to a trajectory xt is derived from the terminal node density

{Π(xT )} as follows: Π(xt) =
∑

Π(xT ) where a terminal node xT is in the summation if and

only if xt is an ancestor node of xT .

In this section, I assume that all information is held in common, and trading is

costless. At the outset of date 0, trader h holds an initial portfolio ωh. If h holds ωh

through date t, and date-event pair xt materializes, then h receives dividend ωh(xt) during

date t. The symbol ω =
∑

ωh denotes the unlevered market portfolio.27 In equilibrium, the

consumption growth rate is ω(xt+1)/ω(xt).

A financial security is represented as a vector Z = [Z(xt)] where Z(xt) is the

amount which one unit of the security pays its owner at xt. Assume that the following

securities are available for trade at every date t: (1) Zero coupon, risk-free bonds: these

bonds underlie the term structure of interest rates. Assume that a zero coupon bond

maturing at any date t is available for trade at any date before t. (2) The market portfolio:

this security is denoted by Zω, and is a scalar multiple of ω. (3) European put and call

options on the market portfolio. I assume that we can guarantee markets to be complete

by allowing enough variation in the option exercise prices. A call option issued at xt has an

exercise price of K, expires at date t + j, and pays max{qω(xt+j) −K, 0}, where qω(xt+j)

denotes the price of the market portfolio on the xt+j-market. A put option is analogous to

a call option, but returns max{0,K − qω(xt+j)}.

Since markets are assumed to be complete, there are state prices that underlie

security prices. Let v(xt) denote the price of an xt-state contingent claim, and v = [v(xt)].

I take x0 as numeraire: that is, v(x0) = 1. On the date 0 market, the price qz(x0) of security

Z = [Z(xt)] is r •Z. On the xt market, the price qz(xt) of Z is the v-value of the Z-payoffs

from date t on, divided by v(xt).28

A trader’s wealth at the beginning of t consists of the market value of his xt−1

portfolio, including dividends paid in xt. The trader then divides his xt-wealth into a
27The levered market portfolio, as a portfolio of levered securities is a combination of call options.
28Define the vector v′(xt) as follows: The xj-th component of v′(xt) is v(xj) for all successor nodes xj to

xt, and the xj-th component is zero otherwise. Then qz(xt) = v′(xt) • Z/v(xt).
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portion to be consumed at t, and a portion to be saved. The saved portion is invested

in the securities which comprise his xt-portfolio. Denote trader h’s net trade of the xt-

contingent commodity by zh(xt). Then the consumption vector ch = [ch(xt)] is given by

ch = ωh + zh.

I assume that each trader has a utility function featuring constant relative risk

aversion. That is:

uh(c) =
c1−θh

1− θh
(2)

where c = ch(xt) and 1/θh is h’s risk tolerance parameter. Furthermore, h’s preferences

are additively separable over time and trajectories. Hence preferences are representable

as the sum of weighted utilities, with weights Dh(xt), where Dh(xt) takes the form of a

discounted probability δt
hPh(xt). Here δh is a discount factor satisfying 0 < δh < 1. Ph(xt)

is nonnegative, and sums to unity for each t. Moreover, for each t, Ph(xt) is determined by

conditioning on the probabilities Ph(xT ) which attach to the terminal date T .

Every trader is assumed to choose his consumption plan ch by maximizing the sum

of weighted utilities
T

∑

t=1

∑

xt

Dh(xt)uh(ch(xt)) (3)

subject to the lifetime budget constraint v • zh ≤ 0. Denote trader h’s x0-wealth by Wh =

v • ωh. Then h’s demand function is:

ch(xt) =
(Dh(xt)/v(xt))1/θhWh

∑

τ v(xτ )(Dh(xτ )/v(xτ ))1/θh
(4)

Note that in (4) the pattern of the consumption profile is keyed from wealth Wh,

in that (4) specifies the fraction of wealth Wh which is to be consumed in each date-event

pair xt. In the discussion below, it will be useful to consider the consumption profile as

being keyed to initial consumption ch(x0) rather than to Wh. Note that v(x0) = 1 since

x0 is taken as numeraire. Hence the denominator of (4) is equal to Wh/ch(x0), so that by

substitution, h’s consumption growth rate is given by:

ch(xt)/ch(x0) = (Dh(xt)/v(xt))1/θh (5)

7 A Representative Trader Characterization

The equilibrium state prices v are defined by the condition
∑

h ch(v) =
∑

h ωh, with nu-

meraire x0. These prices underlie the way that all securities are valued in the market. An
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important feature about the model is that the equilibrium v can be characterized as if there

were a single representative trader in the market. Indeed, imagine that there is only one

trader, having risk aversion parameter θR and discounted probability weights δt
RPR(xt).

Define the cumulative growth rate of aggregate consumption g(xt) as:

g(xt) = ω(xt)/ω(x0)

In this case, (4) together with the equilibrium condition imply that v(xt) takes the form:

v(xt) = δt
RPR(xt)g(xt)−θR (6)

Because log-utility corresponds to the case θR = 1, this last equality generalizes equation (4)

in Shefrin-Statman (1994) to the general case of CRRA- utility; and Theorem 1 generalizes

the representative trader characterization described on pp. 326-327.

I characterize sentiment through the beliefs of a representative trader.29 Theorem

1 below shows how the parameters of a representative trader can be defined in terms of the

parameters of the individual traders, market portfolio, and equilbrium prices. I emphasize

that this theorem is utilitarian, in that its purpose is to provide a vehicle for characterizing

the pricing kernel. The utilitarian point is important because I establish that the represen-

tative trader characterization is not unique, and show how different representative traders

relate to one another. In particular, any representative trader can be chosen for the purpose

of characterizing the kernel. The pricing kernel in no way depends on which particular rep-

resentative trader is selected. However, I would point out that the choice of representative

trader affects the ease with which the structure of the kernel can be elucidated. Only in

this sense is the choice of representative trader critical.

I note that the representative traders’ beliefs and preferences are not as well be-

haved as those of the individual traders. For example, the risk aversion parameter of the

representative trader may depend on xt, rather than being constant. Likewise, the discount

term δR,t may vary with t. This variability occurs when risk tolerance or the discount fac-

tor is not uniform across the trading population. In this case, θR(xt) reflects the curvature

of the utility function of xt-consumption, but loses its interpretation as a measure of the

degree of relative risk aversion. In addition, the representative trader’s probability beliefs

may violate the principle of conditional probability.30

29The literature establishing the existence of a representative trader is quite extensive. See Basak (2000).
30Theorem 1 describes a constructive approach for tying the beliefs of the representative trader to those of
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Investor sentiment is generally understood to mean the collective error in the mar-

ket. By definition, sentiment is absent or zero when all traders hold objectively correct

beliefs; that is, when Ph = Π for all h. This case, where all traders hold homogeneous

beliefs, Ph = Π, serves as a benchmark in the development of theorem 1 below. The in-

terpretation of Π as an objective distribution is important for issues that involve market

efficiency. However, I would emphasize that the formal results in the paper do not require

that Π be objective. An alternative interpretation of Π is simply a benchmark case where

traders hold homogeneous beliefs.

Let vπ be the equilibrium price vector v, and ch,π be the equilibrium value of ch

that occur when Ph = Π for all h.31 These are benchmark values. To set the stage for the

theorem, I define two variables used in the construction of the representative trader. The

first variable plays a key role in the approach that Benninga-Mayshar (1993) develop to

define the representative trader’s coefficient θR.

αh(xt) =
ch,π(x0)
ω(xt)

[δt
hΠ(xt)/vπ(xt)]1/θh (7)

The second variable is:

γ(xt) =
H

∑

h=1

ch(x0)(Dh(xt))1/θh

∑H
j=1 cj(x0)

Theorem 1 Let v be an equilibrium state price vector.

(1) v satisfies

v(xt) = δt
R,tPR(xt)g(xt)−θR(xt) (8)

where θR, δR, and PR have the structure described below:

1/θR(xt) =
∑

h

αh(xt)(1/θh) (9)

δt
R,t =

∑

xt

γ(xt)θR(xt) (10)

the individual traders, the risk tolerance of the representative trader to those of the individual traders, and

the discount factor of the representative trader to those of the individual traders. This requires some care

because beliefs, risk tolerance, and time discounting do not aggregate in separable fashion. The beliefs of the

representative trader are impacted by the risk tolerances and discount factors of the individual traders, not

just their beliefs. Theorem 1 provides a characterization that stresses beliefs in the beliefs-aggregation, risk

tolerances in the risk tolerance-aggregation, and discount factors in the discount factor-aggregation. The

nature of this emphasis is best seen in the aggregation conditions that appear in the proof of theorem 1.
31Because of the gross substitute condition for CRRA-demand functions, equilbrium is unique.
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where the summation in (10) is over all traders and xt-events at date t, and

PR(xt) =
γ(xt)θR(xt)

δt
R,t

(11)

(2) The representative trader is not unique. Equation (6) implies that any two representative

traders, denoted R, 1 and R, 2, are related together through the expression:

δt
R,1PR,1

δt
R,2PR,2

= gθR,2/θR,1 (12)

(3) An alternative definition for θR(xt), one that is not defined in terms of the objective

probabilities Π, is:

1/θR(xt) =
ln(γ(xt))− ln(g(xt))

ln(v(xt))
(13)

In the remainder of the paper, I illustrate the nature of the insights that my

results provide about the impact of heterogeneity on asset pricing. In order to maintain

continuity between the examples discussed in previous examples, and the interconnections

among all the results in the paper, I have based the subsequent illustrations on a common

example that features log-utility, T = 1, a set S containing 65 states, and two traders with

equal initial wealth. Each state is associated with a rate g of consumption growth, with g

ranging from 0.80 to 1.44, in increments of 0.01. I note that because θh = 1 for all h, (9)

implies that θR = 1. The log-utility assumption is not restrictive, at least for the points

I illustrate with the example. Nevertheless, the log-utility assumption is special in certain

respects, and I indicate where this is so at various spots in the paper.32 The example

features a market populated by two traders, whose beliefs are (approximately) lognormal,

but featuring different means. One trader is overly optimistic about future consumption

growth (bullish) and the other is overly pessimistic (bearish). The bull believes that the

mean value of log-consumption growth (ln(g)) is 12.01%, while the bear believes it to be

−1.00%. The true mean is 5.28%. Both believe the standard deviation to be 3.76%, and I

assume this to be the objectively correct value.

The first item to illustrate with the example is theorem 1. Being approximately

lognormal, the density functions of the individual traders are single peaked. But because
32I considered including an additional example that features values for θh different from 1, but decided

against it for reasons of length. The general features of that example are the same as the one I present in

the paper. I chose θh = 1 for all h, in the example I do use, to make clear how sentiment generalizes the

efficiency condition in the Shefrin-Statman (1994) framework.
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of the divergence in their viewpoints, the modes (peaks) are widely separated. Recall that

in Shefrin-Statman (1994), the representative trader’s beliefs are a convex combination of

the individual traders’ beliefs, this being a special case of theorem 1. Figure 6 displays

the impact of these divergent viewpoints on the shape of the representative trader’s density

function. The figure shows the objective density function, the individual traders’ density

functions, and the representative trader’s density function. Compared to the objective

density, notice that representative trader’s density is bimodal, and fat-tailed.33

8 Pricing Kernels and Sentiment

In this section, I propose a formal definition of sentiment, and relate this definition to the

pricing kernel. The definition of sentiment generalizes the condition delveloped by Shefrin-

Statman (1994) that combines the error-wealth covariance and average trader error. The

sentiment variable I develop below has two advantages over the Shefrin-Statman (1994)

condition. First, it relates directly to the structure of the pricing kernel. Second, the error-

wealth condition in theorem 2 of Shefrin-Statman (1994) is specific to log-utility. Rather

than focusing on whether or not the error-wealth dot product is zero, the more general

condition focuses on whether or not sentiment is zero.34

I consider this section to be the core of the paper. Sentiment lies at the heart of the

debate about the extent to which asset pricing fails to correctly reflect fundamental value.

And the pricing kernel is the basis for pricing all assets. Theorem 2 below, decomposes

the pricing kernel into two components, one pertaining to fundamentals and the other to
33When there are more than two traders, the representative trader’s probability density is a convex

combination of lognormal densities. This typically produces a lumpy, fat-tailed density, just as in the case

of two traders.
34The dot product condition is special because heterogeneity involves implicit probability weighting. Equa-

tion (4) shows how a trader’s return distribution varies as a function of θh. This equation enables us to

compare how the value of θh affects the manner in which a trader weights probabilities relative to a log-utility

trader (for whom θh = 1). Note from (4) that the power function P 1/θ lies at the heart of probability weight-

ing. For θ > 1 and 0 < P < 1, the power function is strictly concave, its first derivative goes to infinity as P

approaches zero, and is unity when P = 1. This implies that small probabilities are implicitly overweighted

relative to the case of log-utility, a feature shared by prospect theory (Kahneman-Tversky, 1979). Therefore,

the dot product of relative wealth and probability error is not sufficient to analyze market efficiency in the

general case, because probability weighting is ignored. Of course, we could normalize probability weights,

produce associated probabilities, and compute the value of the dot product function. This would provide an

efficiency measure relative to a log-utility model, but not one relative to the true spectrum of preferences.
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sentiment. This result is straightforward to prove, and lies at the core of how heterogeneity

impacts asset pricing.

Let r(Z) denote the (gross) return vector for security Z. In general, a pricing

kernel Mt is a stochastic process that satisfies Et(Mt+1rt+1(Z)) = 1. The state price vector

v provides the present value, at date 0, of a contingent claim to one xt−dollar. In a discrete

time, discrete state model, a pricing kernel Mt restates this present value, in terms of

per unit probability, v/Π. Now M(xt) is more correctly written M(xt|x0). To obtain the

stochastic process for the kernel, define Mt ≡ M(xt+1|xt)/v(xt), where Mt is a random

variable. For this reason, I focus on M(x1) below, as the prototypical case. Using (8),

obtain:

M1 ≡ M(x1) = δR(PR(x1)/Π(x1))g(x1)−θR (14)

where I have suppressed the notation indicating that both δR and θR are time and state-

dependent respectively.

Note the likelihood ratio Λ(x1) = PR(x1)/Π(x1) that appears in (14). Shefrin

and Statman (1994) establish that this ratio captures the effect of noise traders on prices.

Define sentiment by the variable λ ≡ ln(Λ).35 In figure 2, the market sentiment attached to

both date 1 nodes is zero, because PR(x1) = Π(x1) for those nodes. However, note that for

the date 2 node that features two successive up-moves, the log-likelihood ratio is positive:

ln(.50/.49) = 0.02 > 0. The wealth shift from the bearish trader 2 to the bullish trader

1, that results from the first up-move, will lead the value of λ, conditioned on the first

up-move, to become positive after the second up-move.36

The impact of sentiment on the pricing kernel is most easily summarized through

the log-kernel process m ≡ ln(M) and sentiment process λ. Equation (14) implies:

Theorem 2

m = λ− θR ln(g) + ln(δR) (15)

where m, λ, θR, and g are functions of x1.
35λ is defined relative to Π, the objective distribution. This enables me to discuss how asset prices are

diffent relative to the case of market efficiency. However, we may instead want to compare how asset prices

are different relative to some other situation, such as when traders falsely believe the underlying process to

be I.I.D. In this case, the theorems hold, as long as we are careful to reinterpret the role of Π, a point I

emphasized in the previous section.
36Some additional computation shows that the value of λ at this particular date 2 node, conditional on

an up-move at date 1, will be 0.019.
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Theorem 2 states that the log-kernel is the sum of two stochastic processes, a

sentiment process and a fundamental process based on aggregate consumption growth.

Note that prices are efficient when the sentiment variable λ is uniformly zero, meaning its

value is zero at every node in the tree. Hence, in an efficient market there is no aggregate

belief distortion, in which case there is only one effective driver in (15), the fundamental

process.

Figure 7 consists of three panels that illustrate the main concepts discussed in

this section. The top panel depicts the graph of the dot product of relative wealth and

trader errors against gross consumption growth rate g. Notice that the dot product is

negative in the range 1.01 to 1.09, and nonnegative elsewhere. This pattern corresponds

to the relationship between the objective probability density and representative trader’s

probability density in figure 6. Notice that in that figure, the representative trader attaches

too low a probability to growth rates between 1.01 and 1.09.

The middle panel in figure 7 depicts the graph of sentiment λ against g. Note

that in this example, the graph takes the shape of a smile.37 Note too that λ takes values

that are negative between 1.01 and 1.09, and positive elsewhere. Hence the dot product

function and sentiment functions convey identical information. However, notice that the

dot product function is defined in absolute terms, and approaches zero at the extreme ends

of the range. However, because sentiment is defined as a log- likelihood ratio, it is expressed

in relative terms, and is actually furthest away from zero at the extremes. In relative terms,

the extremes are where the errors are most severe.

The bottom panel of figure 7 shows the graph of the log-kernel and its two compo-

nents, as functions of g. Theorem 2 tells us that when sentiment is zero, the graph of the

log-kernel (equal to − ln(g)) is downward sloping. But the theorem also shows the sentiment

smile being transmitted to the graph of the log-kernel.
37The smile is a special case. Here are three other cases. First, in an efficient market, λ = 0 for all g,

so the graph of λ against g is flat. This is because when Ph = Π for all h, the value of PR in theorem 1

turns to be Π. Second, when the market is dominated by bulls, the graph of λ is positively sloped. This is

because bulls attach too high a probability to high consumption growth states, and too low a probability to

low consumption growth states. Therefore, λ is negative for low consumption growth states, and positive for

high consumption growth states. Third, if the market is dominated by bears, then the graph is negatively

sloped. The smile feature in the sentiment function occurs when the graph of λ is negatively sloped for low

consumption growth states, and positively sloped for high consumption growth states. That is, although

sentiment reflects the beliefs of both bulls and bears, the beliefs of the bulls dominate for high consumption

growth states, and the beliefs of bears dominate for low consumption growth states.
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There are three side issues associated with the characterization of sentiment and

market efficiency used in the paper. The first issue concerns nonuniqueness of the repre-

sentative trader. Recall that I defined sentiment in terms of the representative trader’s

probability beliefs as obtained from theorem 1. However, as I noted in the statement of this

theorem, the characterization of the representative trader is not unique.

Consider the merits of the particular representative trader described in theorem 1.

If all traders hold objectively correct beliefs, meaning Ph = Π for all h, then the value of

PR will be Π, a property that is easily verified.38 If all traders have the same coefficient of

risk aversion, then the representative trader in theorem 1 will share that same value, across

all xt. This too is easily verified. Hence the particular representative trader described in

theorem 1 is structured so that efficient prices serve as the base case, with sentiment λ

reflecting departures from the base case.

The pricing kernel does not change if we focus on other representative traders than

the one described in theorem 1. But the use of other representative traders may be less

useful for understanding the impact of traders’ beliefs on the structure of the kernel. For

example, one can always define the representative trader’s beliefs by the objectively correct

distribution Π, even when PR 6= Π for the PR of theorem 1. In the notation of equation (12),

PR,1 = PR and PR,2 = Π. But this comes at a cost, in that sentiment λ gets transferred

into the associated coefficient of relative risk aversion θΠ = θR,2. Specifically (12) implies

that

θΠ = θR −
λ + t ln(δR/δΠ)

ln(g)

where δΠ is the discount factor δR,2. Unlike the representative trader of theorem 1, the

Π−based representative trader’s beliefs are defined independently of the beliefs of the in-

dividual traders, which in turn causes λ to drive a wedge between θΠ and the individual

traders’ coefficients of risk aversion. As discussed above, the kernel might feature a smile

effect stemming from the differential beliefs of bulls and bears, but its analysis through θΠ

will be less illuminating, and less intuitive.

The second side issue concerns the choice of probability used to normalize the

state prices v, in order to obtain a kernel. In the preceding discussion, I chose the objective
38Benninga-Mayshar (1993) characterize θR for the case when all traders know the objective probabilities.

See the proof of theorem 1 in the appendix.
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distribution Π. An alternative is to choose PR, and use (8) to obtain a different kernel,

M ′(xt) = δt
Rg(xt)−θR (16)

This alternative appears to make the kernel depend only on fundamentals, not sentiment.

But remember that the kernel is a stochastic process, and under this definition the underly-

ing probability distribution is PR. In this respect, I note that sentiment λ describes how PR

is derived from Π. Moreover, PR may not conform with the laws of conditional probability,

thereby violating Bayes rule.

The final side issue deals with the impact of sentiment on the consumption growth

profiles of the individual traders. Combining equations (8) and (5), obtain:

ch(xt)/ch(x0) = (Dh(xt)/DR(xt))1/θhg(xt)θR/θh (17)

Equation (17) expresses h’s consumption growth in terms of aggregate consumption

growth, h’s risk tolerance relative to that of the representative trader, and h’s subjective

probability of the realized event relative to that of the representative trader. The case

when sentiment λ = 0 provides an important benchmark, since the representative trader’s

consumption always grows at rate g(xt). Equation (17) implies that the consumption of

a trader who is more (less) risk averse than the representative trader grows as a concave

(convex) function of g(xt). Notably, h’s consumption growth is an increasing function of

the probability he attaches to the occurrence of xt. Observe that a higher tolerance for risk

amplifies the impact of belief heterogeneity.

9 Issues Involving Robustness

There are two main issues about robustness in the paper, robustness in respect to CRRA-

utility, and robustness in respect to my choice of illustrative examples. I begin with the

utility function issue.

In the previous section, I defined sentiment λ as a log-likelihood ratio function,

where the numerator is the representative trader’s probability density and the denominator

is its objective counterpart.39 Under this definition, market efficiency and uniformly zero

sentiment are synonymous. This approach is not specific to CRRA-utility, because the
39The denominator need not be the objective distribution. It can actually be any distribution we wish to

study for asset pricing purposes.
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existence of a representative trader is not unique to CRRA-utility. See Basak (2000), who

analyzes the character of representative traders in a model that features general utility

functions. However, the exact expressions in my theorems are based on CRRA-utility.40 In

particular, the log-kernel decomposition result in theorem 2 is specific to CRRA-utility. This

raises the question of how the results in the paper about trade-induced wealth redistribution

are affected when traders possess other utility functions.

One of the most widely used utility functions in financial economics features con-

stant absolute risk aversion (CARA). Therefore, consider how the character of my results

change when all traders have CARA-utility, instead of CRRA-utility. The CARA-utility

function has the form uh(c) = eAhc, where Ah denotes trader h’s Arrow-Pratt risk aversion

measure (−u′′/u′).

By maximizing expected CARA-utility subject to the budget constraint v •zh ≤ 0,

and noting that Ph(x0) = v(x0) = 1, we can solve for h’s demand function:

ch(xt) = ch(x0)−
ln(v(xt)/Ph(xt))

Ah
(18)

and

ch(x0) =
Wh

∑

t v(xt)
+

∑

t>0 v(xt) ln(v(xt)/Ph(xt))
Ah

∑

t v(xt)
(19)

where the notation
∑

t means summation over all nodes in the tree.

There are two crucial issues associated with the impact of heterogeneity on asset

pricing. The first concerns self-cancellation of individual trader errors; i.e., uniformly zero

sentiment. In general, sentiment is defined in relation to the the level sets associated with

trader beliefs in the excess aggregate demand function,
∑

h(ch − ωh). The first issue is:

under what conditions do changes in traders’ beliefs leave the value of aggregate demand,

and hence equilibrium prices v, unchanged? The second issue concerns the extent to which

aggregate demand and prices are affected by dynamic wealth transfers.

To address the first issue, notice that by (18), the aggregate demand function

involves the sum:
H

∑

h

ln(v(xt)/Ph(xt))
Ah

Consider the special case when traders share the same CARA-coefficient, Ah = A. Notice
40As with the discussion concerning theorem 1, care must be taken to deal with issues involving

nonuniqueness.
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that this term can be written as a log-product

A−1 ln(v(xt)H
∏

h

Ph(xt))

In combination with (19), this implies that when traders share the same CARA-coefficients,

equilibrium prices are invariant to shifts in traders’ beliefs, as long as the shift preserves

the value of the probability-products. This is a different condition than the one embodied

within the CRRA-based aggregate demand function.41 The point here is that the level sets

associated with the aggregate demand function are different for different utility functions.42

Volatility in asset prices stems from a combination of factors: the nature of traders’

beliefs, the extent of trader disagreement, and the stochastic nature of wealth redistribution

induced by trading. As I discussed in sections 3 through 5, stochastic wealth redistribution

is an important source of volatility in my model. But it is not a feature of all models. I note

that the issue has been well studied in aggregation theory: See Heineke and Shefrin (1988).

Notice that (18) and (19) feature the property for which CARA-utility is well known:

∂ch(xt)/∂Wh = 1/
∑

t
v(xt) (20)

Condition (20) stipulates that each trader allocates every marginal dollar of portfolio wealth

to the risk-free security. But this means that wealth distribution plays no role in determining

equilibrium prices, since the aggregate excess demand function
∑

h(ch(v)−ωh) is invariant to

wealth redistribution. Observe that equations (18) and (19) imply that the CARA-demand

function satisfies the Gorman polar form:43

ch(xt) = J(v, h) + G(v)Wh
41Hence, the structure of state prices is different. For example, when traders have the same coefficient

of absolute risk aversion, A, then v is a ratio of the representative trader’s discounted probability to the

following ratio: eAω(xt)/eAω(x0). Contrast this with (6).
42In (18), the term ln(v(xt)/Ph(xt)) is actually ln((v(xt)/Ph(xt))/(v(x0)/Ph(x0)), where v(x0) = Ph(x0) =

1 because date 0 consumption is the numeraire and there is no uncertainty at date 0. In a one date binomial

setting where there is no date 0 consumption, we would choose one of the two date 1 nodes as numeraire. In

this case the equal product condition described in the paragraph is a product of likelihood ratios. Suppose

there are just two traders with the same wealth, and the objective probability of both states is 1/2. This

is an interesting special case because maintaining the value of the product is the same as maintaining the

arithmetic average. The product of the likelihood ratio remains at 1 as beliefs are altered to maintain a

constant artithmetic average. This means that for this special case, the CARA efficiency condition is the

same as the CRRA efficiency condition.
43There are two features of CARA-utility that strike me as problematic. First, the fact that each trader

allocates 100% of every marginal dollar of portfolio wealth to the risk-free security is extremely unrealistic.
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∑

h

(ch(xt)− ωh(xt)) =
∑

h

J(v, h) + G(v)
∑

h

Wh (21)

where in the case of CARA-utility,

G(v) = 1/
∑

t
v(xt)

Gorman (1953) established that the aggregate demand function is invariant to the wealth

(income) distribution, if and only if individual demand functions satisfy the polar form.44

I note that the Gorman polar form also underlies the two-fund separation property

in the capital asset pricing model (CAPM). When traders have quadratic utility and share

the same beliefs, but not necessarily the same risk tolerance parameters, their demand

functions will satisfy the Gorman polar form. See the next section.

To recapitulate, there are two issues involving the impact of heterogeneity on

equilibrium prices. The first issue concerns the case when traders’ errors are self-cancelling.

This situation corresponds to sentiment λ being uniformly zero. I note that there is nothing

specific to CRRA-utility in the approach. Nevertheless, the precise equations described in

my theorems are specific to CRRA, which takes us to the second issue. An important

feature of my model is that stochastic wealth redistribution injects volatility into asset

pricing. This feature is not universal. Specifically, when the individual utility functions

satisfy the Gorman polar form, trading-induced wealth redistribution stemming from trader

heterogeneity does not impact the volatility of asset prices.

The final robustness issue concerns the illustrative examples I present in the pa-

per. Some examples feature nonzero sentiment, and other examples feature zero sentiment.

In my model, the representative trader’s probability density function underlies asset pric-

ing, and can feature fat tails and/or multi-modality. Think about whether this feature is

Second, the Gorman polar form does not constrain consumption to be nonnegative. Indeed, if J(v, h) 6= 0,

then some components of J(v, h) must be negative. This is because the budget constraint requires that

v • J(v, h) = 0.
44CARA-utility is a feature of both noisy rational expectations models, and some of the behaviorally-

based asset pricing models featuring sentiment. An important feature of noisy rational expectations models

is that traders condition their inferences on price and their private signals, without having to take the joint

distribution of wealth and signals into account. This is a strength when it comes to solving the model, and

a weakness when it comes to applying the model. Notably, the Gorman polar is the underlying reason why

the wealth distribution can be ignored in the problem. In addition, models that use CARA-utility tend to

feature just two assets, one risk-free and the other risky. This strikes me as restrictive as far as drawing

general conclusions about asset pricing is concerned.
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common (robust), or whether it is instead a contrived artifact. Consider the process of

constructing an example, beginning with a collection of different probabilty distributions

for the individual traders. Theorem 1 provides the associated representative trader’s beliefs.

In constructing the example, we are free to choose the objective density Π. In this regard,

we can choose to make Π equal to the representative trader’s density PR. If we do so, we

will have produced an example that features zero sentiment. However, because the aggre-

gation process in my model involves weighted averages of individual density functions, the

resulting objective density will typically be multi-modal and/or fat-tailed.45 On the other

hand, if we begin with a unimodal objective density, we can certainly construct individual

beliefs that will aggregate to the objective distribution. However, as I showed in section 4,

the resulting individual densities are tightly constrained, constitute a knife-edge case, and

because they are contrived to produce zero sentiment, may behave perversely.46

10 The Mean-Variance Efficient Frontier

In theory, what is the nature of beta in a world where returns reflect both compensation

for risk and mispricing stemming from noise trader errors? That is one of the questions

posed by Shefrin-Statman (1994). In this section, I extend their analysis to address the

formal connection between the mean-variance efficient frontier and the pricing kernel, and

the effect of nonzero sentiment upon the frontier.

The risk premium on any security Z is determined by the covariance of its return

with the kernel. In fact the risk premium is just −i1cov(r(Z),M). Of course, the risk

premium can also be expressed in CAPM-like terms, by means of a mean-variance efficient

benchmark portfolio and a beta. Beta is just the covariance between r(Z) and the return

to the benchmark, divided by the variance of the benchmark return.

Below I provide a general characterization of the mean-variance efficient frontier in

terms of the pricing kernel.47 Identifying the benchmark involves maximizing the expected

quadratic utility EΠ{r(xt) − νr(xt)2} of the return r to a one dollar investment. This
45When θh 6= 1 for some h, this statement holds approximately.
46In the example I presented in section 4, trader 2 adjusts the probability of a given state downwards, as

the state occurs repeatedly along a realization.
47My focus is general and structural. In contrast, Daniel, Hirshleifer, and Subrahmanyan (1998) focus

on more specific issues, and propose a theory that explains the relationship between returns and valuation

measures such as book-to-market in the presence of mispricing stemming from overconfidence.
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maximization underlies the next theorem.

Theorem 3 The return rMV (x1) to a mean-variance efficient portfolio is:

rMV (x1) = ν−1(1− [M(x1)EΠ{M(y1)− ν}[EΠ{M(y1)2}]−1]) (22)

where

EΠ{M(y1)− ν}[EΠ{M(y1)2}]−1 = EΠ{δRΛ(y1)g(y1)−θR − ν}[EΠ{(δRΛ(y1)g(y1)−θR)2}]−1

and ν is a nonnegative parameter whose variation generates the mean-variance efficient

frontier.

Theorem 3 expresses the mean-variance return in terms of the pricing kernel. No-

tice that the return rMV is linear in the kernel M(x1), and has a negative coefficient.48

Hence, the return is low in a state that bears a high price per unit probability.

Sentiment can alter the shape of the relationship between the mean-variance return

rMV and aggregate consumption growth g. In an efficient market, λ ≡ 0, in which case rMV

is a monotone increasing, concave function of g, for a suitably low value of ν.49 This follows

from (8) and the proof of theorem 3 (see the appendix). In an efficient market, a mean-

variance portfolio earns very low returns in low-consumption growth rate states. Indeed

mean-variance returns can fall below one hundred percent: there is no limited liability

attached to a mean-variance efficient portfolio.50

However, sentiment can distort the shape of the above relationship between rMV

and aggregate consumption growth g, by introducing local extrema.51 To see how a smile

pattern in the sentiment function can affect the shape of the rMV function, consider figure

8, which involves the same example that I presented in sections 7 and 8. The top panel

displays the graph of the return to a mean-variance efficient portfolio as a function of g,

when sentiment is zero. Here the function is concave and monotone increasing. The bottom

panel display the graph of the same relationship for the case when the sentiment function
48The coefficient is time-varying, and stochastic. Note that equation (22) is general whereas the equation

that follows it is specific to CRRA-utility.
49As ν → 0, the mean-variance utility function approaches risk-neutrality.
50Hence, gross returns can be negative, which is an important feature of benchmark portfolios used in the

calculation of correct betas. Concavity implies that the marginal return to consumption growth is declining.

For very high consumption growth rates, the return peaks, and can decline.
51In the relevant range.
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exhibits the smile pattern displayed in figure 7b. Here the rMV -function achieves a local

maximum at g = 1.05. That is, the graph exhibits a “frown” pattern.

To understand what drives the shape of the rMV -function in this example, observe

that in figure 6, the mode of Π lies in the valley between the local maxima of PR. This

implies underpricing in the valley (where Π > PR), and overpricing at the extremes (where

Π < PR). That is, the bulls cause the the highest consumption growth rate states to be

overpriced, and the bears cause the lowest consumption growth rate states to be overpriced.

A mean-variance efficient portfolio, constructed using objectively correct probabilities, will

respond to the attendant mispricing by tilting towards underpriced states, and away from

overpriced states; hence, the “frown”.

What does a “frown” pattern, meaning the existence of a local maximum in the

mean-variance efficient graph, imply for the pricing of securities, like the market portfolio,

that feature high payoffs in the highest consumption growth states? It implies that these

securities have negative “up-betas,” and low overall betas.52

11 The Term Structure of Interest Rates

Economists have long been puzzled by the fact that the expectations hypothesis of the

yield curve fails to hold. See Campbell (1995).53 In this section, I discuss the effect of

sentiment on the term structure of interest rates, and the expectations hypothesis. Theorem

4 below describes the relationship between the term structure and the representative trader’s

parameters.

Theorem 4 Let itt denote the gross return to a risk-free investment in which one real dollar

is invested at date 0 and pays off t periods later. The discount factors which are based upon
52Theorem 3 pertains to one-period returns. There is a counterpart result for t−period returns. But the

benchmark portfolio used to price risk for t−period returns is not equivalent to compounded one-period

mean-variance returns. In other words, from a theoretical perspective, betas based on monthly returns

should not be used to price annual returns.
53Campbell points out that many of the term structure studies during the 1960s did not impose rational

expectations, and therefore allowed systematic profit opportunities to exist. Although that may be the case

in my model, I note that these opportunities are not riskless. There may well be traders who do have

objectively correct beliefs, and yet refrain from seizing these opportunities because of the risk involved. See

footnote 17, Campbell (1995).
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(6) and define the term structure of interest rates have the form:

(1/it)t = δt
R,tER{g(xt)−θR(xt)|x0} (23)

where ER is the expectation under the representative trader’s probability distribution.

Equation (23) follows directly from (8) and the fact that the term structure is

based on securities that offer a fixed payoff across all date t−states. This equation makes

explicit the connection between the yield curve and the beliefs of the representative trader.54

The equation captures how interest rates evolve in terms of the discount factor δR,t, the

parameter θR, and the expectations of the representative trader ER.

The expectations hypothesis of the term structure predicts that subject to a risk

premium, the expected return to holding short term Treasury securities is the same as the

return to holding long term Treasury securities. Therefore when the current slope of the

yield curve is steep, future yields on short-term bonds must rise to compensate for the

current shortfall, and yields on long bonds must rise to generate capital losses to holders

of long bonds. Summaries of the evidence concerning the expectations hypothesis can be

found in Shiller (1990), Campbell and Shiller (1991), Campbell (1995) and Campbell, Lo,

and MacKinlay (1997). This evidence is mixed. It appears that when the current slope of

the yield curve is steep, future short-term rates do rise. However, they do not rise across all

maturities, to the degree predicted by the expectations hypothesis. Moreover, future yields

on long bonds do not rise on average: they fall.

Now the representative trader holds the market portfolio and consumes its divi-

dends. Notably, a representative trader for whom cR(x0) = 1, consumes the cumulative

dividend growth rate gt = g(xt). The expectations hypothesis is driven by the fact that

at the margin, the representative trader is indifferent to substituting bonds with long term

maturities with those of shorter maturities in his portfolio. For example, if we consider

t = 2 as the long term and t = 1 as the short term, then indifference at the margin implies

that:

ER{g−θR
2 }i22 = ER{g−θR

2 i1(x1)}i1 = 1 (24)

That is, the marginal utility of a dollar invested in either the short-term bond or the long-

term bond is equal to the marginal utility of a dollar, which is unity. For ease of notation
54This equation treats x0 as the current event. The expression is easily generalized when the current event

is xt.
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the x2 argument in θR is suppressed, as is the x0 associated with the conditional expectation

in (24). Define the date 2 forward rate by:

f2 =
(i2)2

i1
(25)

I note that (24) can be rewritten to obtain a condition that relates the spot and

forward interest rates, a relationship often used to test the expectations hypothesis. When

equation (26) below holds, the representative trader is indifferent to substituting a long

bond for a short bond in his portfolio.55 This condition is derived using (2), (23), and

the fact that the representative trader consumes the cumulative growth rate of the market

portfolio. We have:

Theorem 5

f2 − ER{i1(x1)} =
covR[g(x2)−θR , i1(x1)]

ER{g−θR
2 }

(26)

Equation (26) implies that there are three impediments to the validity of the

expectations hypothesis. The first is a nonzero risk premium that interferes with the pure

expectations hypothesis, which states that the forward rate equal the expected spot rate.

In general, the right-hand-side of (26) is nonzero.

As for the version of the expectations hypothesis that requires a nonzero risk

premium but requires it to be time invariant, there are two additional impediments. First,

the expectations hypothesis requires that the expectation in equation (26) be taken with

respect to the objective distribution Π. However, in (26), the expected spot rate is computed

relative to the representative trader’s beliefs PR, not the objective process Π. The point is

that when λ 6= 0, the representative trader holds erroneous beliefs.

The final impediment concerns the stability of the risk premium, given the covari-

ance term in (26). Let Z2 be the long bond. Since the risk premium is given by well known

expression −i1covΠ(r(Z2),M), the expectations hypothesis requires that the preceding co-

variance vary inversely with the spot rate i1. But by its nature, heterogeneity induces time

variation into this covariance: recall the discussion about time variation in both θR and

δR.56

55The equation, which was derived for the case of t = 1 and t = 2, is easily generalized.
56The covariance in question is between marginal utility of aggregate consumption growth at date 2 and

the date 1 spot interest rate. Suppose that this covariance is positive. In this case, the forward rate will
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To illustrate the impact of heterogeneity on the term structure, consider the bino-

mial example developed in sections 3 and 4, there being no term structure in the one-period

example used in the previous three sections.

In sections 3 and 4, I discussed why heterogeneity can cause the short-term interest

rate to be stochastic. In turn, this implies that the entire term-structure is stochastic. In

the homogeneous beliefs case, the interest rate stayed constant at 1.868% over time, which

I rounded to 1.87%. By applying the argument developed in section 4 to find the entire

term structure of interest rates, we can determine that in the homogeneous case described

there, the yield curve is flat at a rate of 1.868%. However, for the example discussed in

section 4, a little computation shows that heterogeneity causes the date 0 yield curve to

slope downward, with successive values of 1.868%, 1.863%, 1.858%, 1.852%, 1.847%.

What about the forward rates? Equation (25) implies that on the date 0 market,

the date 2 forward rate will be 1.857%. The expected spot rate under the representa-

tive trader’s probabilities turns out to be 1.868%, implying a negative risk premium of

−0.011%.57 By repeating the calculation after an up-move at date 0, I find that the for-

ward rate has increased to 1.200%, the corresponding expected spot interest rate will have

increased to 1.201%, and the associated risk premium will have changed to −0.010%. This

small change in the risk premium implies that in the example, the expectations hypothesis

does not hold.

tend to be greater than the expected future spot rate. What gives rise to a positive covariance in (26)?

Consider a state where date 2 consumption is high relative to its mean, and so marginal utility is low. A

positive covariance implies that the high consumption growth was likely to have been preceded by a low

spot interest rate at the previous date (1). What keeps the interest rate low? The representative trader’s

pessimistic expectations about future consumption growth. When the covariance is negative, the reverse

holds: high consumption growth at date 2 is likely to have been preceded by a high spot rate at date 1.
57The risk premium is negative because traders hold I.I.D. beliefs, and spot interest rates are stochastic.

Given that risk-free bonds are denominated in real terms, traders demand a premium to accept a sequence

of risky short-term returns instead of a certain long-term return. This occurs in the model because expo-

nentiation amplifies small differences in exponents, and the largest discount factor (lower interest rate) takes

on the greatest relative importance, dominating for higher values of t. Recall that bond prices, discount

factors, are obtained as wealth- weighed convex combinations of homogenous-based bond prices.
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12 Risk-neutral Densities and Option Pricing

In this section, I consider the impact of heterogeneity on the structure of European option

prices. The discussion in this section reinforces the argument I presented in section 5, where

I provided an example to demonstrate that heterogeneous beliefs can lead equilibrium option

prices to deviate from their corresponding Black-Scholes values. In this section, I augment

the argument and relate it to sentiment. The point is as follows: take an economy that

features Black-Scholes equilibrium pricing when sentiment is zero. Then the introduction

of non-zero sentiment leads the equilibrium prices of some options to deviate from their

corresponding Black-Scholes values. A secondary issue concerns the value for volatility to

be used in the Black-Scholes formula when traders disagree about its true value.

In this section I present three equivalent option pricing expressions. The first

expression is developed in theorem 6. This expression is based on the standard risk-neutral

density approach, and involves the arguments used to demonstrate how discrete time option

pricing formulas converge to the Black-Scholes formula in the limit. See Cox, Ross, and

Rubinstein (1979), and Madan, Milne and Shefrin (1989). I develop the other two option

pricing expressions to bring out some important features about the variables that determine

the prices of options.

In theorem 7, I present a second option pricing expression that demonstrates how

traders’ beliefs, operating through the beliefs of the representative trader, affect option

prices. The risk-neutral based option pricing expression in theorem 6 obscures the rela-

tionship between traders’ beliefs and the prices of options. And the traditional risk-neutral

approach to option pricing appears to have led researchers to the view that option prices are

independent of traders’ beliefs, since that is the case in partial equilibrium option models.

However, as I discussed in section 4, traders’ beliefs impact option prices.

The third option pricing expression reflects what I call a “snapshot in time” ap-

proach. The “snapshot in time” expression, also described in theorem 7, depends only

on variables associated with the expiration date. In particular it relies on the long-term

interest rate and the risk-neutral density at the expiration date. This contrasts with the

first expression, in theorem 6, that relies on the co-evolution of the short-term interest rate

process and the risk-neutral process over the life of the option. The “snapshot in time” ap-

proach is useful for pointing out that the differences between continuous time option pricing

models and discrete time option pricing models are less important than the character of
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the risk-neutral process, a point to which I return at the end of the section. This approach

serves to provide a link between the two modeling techniques.

Theorem 6 below describes the first option pricing formula, expressed in terms of

the risk-neutral process and the process for short-term interest rates.

Theorem 6 Given (8), the general expression for the price of a European call option on a

security Z, featuring exercise price K and expiration date t, is determined as follows.

(1) Let S(xt−1) be the set of successor nodes xt to xt−1. The risk-neutral density η(xt)

associated with event {xt}, conditional on xt−1, is defined by:

η(xt) =
v(xt)

∑

yt∈S(xt−1) v(yt)
(27)

(2) Let AE denote the event {qz(xt) ≥ K}, in which the call option is exercised, and Pη{AE}
be its probability under the risk-neutral density Pη. The product of the single period interest

rates defines the cumulative return itc(xt) = i1(x0)i1(x1) · · · i1(xt−1) to holding the short-

term risk-free security, with reinvestment, from date 0 to date t. Then the x0-price of the

call option is given by:

qc(x0) = Eη{(qz(xt)−K)/itc(xt)|AE , x0}Pη{AE |x0} (28)

Risk-neutral density pricing equations, such as (28) tend to obscure how the prop-

erties of the representative trader’s beliefs affect asset prices. As I mentioned above, I

present two alternative option pricing expressions.

Theorem 7 (1) Given (8), a second expression for the price of a European call option on

a security Z, featuring exercise price K and expiration date t, is determined as follows. Let

AE denote the event {qz(xt) ≥ K}, in which the call option is exercised, and PR{AE} be its

probability under the representative trader’s probability distribution PR. Then the x0-price

of the call option is given by:

qc(x0) = δt
R,tER{(qz(xt)−K)g(xt)−θR(xt)|AE}PR{AE} (29)

(2) Define the t-step probability distribution φ(xt) over date t events xt, conditional on x0

as follows:

φ(xt|x0) =
v(xt)

∑

yt
v(yt)

(30)
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Then the third expression for qc is:

qc(x0) = Eφ{(qz(xt)−K)|AE , x0}Pφ{AE |x0}/itt(x0) (31)

Expressions (29) and (31) describe the direct impact of the representative trader’s

beliefs on call option prices. (29) prices the option using the state price representation

(8).58 (31) indicates the connection between the term structure and option prices, in that

the t−period bond is used to price the option. In the remainder of this section, I emphasize

the insights offered by theorem 7 for the pricing of options.

Disagreement among traders over the true probabilities governing the evolution of

the system typically leads the representative trader’s probability beliefs to be multi-modal

and fat-tailed. To illustrate the implication of these features for option prices, I continue

with the example discussed in sections 8, 9, and 10. When both traders hold objectively

correct beliefs, the interest rate will be 5.35%,59 and the representative trader’s density

function will be (approximately) lognormal. Consider a security whose date 0 price is 1,

and whose return has the same (lognormal) distribution as the market portfolio. In this

case, the Black-Scholes formula can be used to compute the equilibrium price of an option

defined on this security. For example, a call option with an exercise price of K = 1.05,

expiring at date 1, will have an equilibrium price of 0.0166.60

When traders hold heterogeneous beliefs, as described in section 8, the interest

rate falls from 5.35% to 4.95%. The equilibrium option price, computed directly using the

one-period interest rate and pricing kernel (from equation (31)) is 0.0314. However, the

Black-Scholes price is 0.0148, a lower value. I note that the equilibrium price of 0.0314 is

higher than the Black-Scholes price of 0.0148 because the bulls drive up the price of the call

option. That is, traders’ beliefs affect option prices, that being the focus of option pricing

expression (29).

The difference between the equilibrium option price and Black-Scholes price is

caused by nonzero sentiment. Nonzero sentiment affects more than the interest rate.

Nonzero sentiment also distorts the risk-neutral density function, causing it to depart from

lognormality. See figure 9 which contrasts the risk-neutral density when sentiment is zero
58Equation (28) makes use of the definition of conditional probability, Prob{xt|η, AE} =

Prob{xt|η}/Prob{AE |η}, where Pη(AE) = Prob{AE |η}.
59The continuously compounded rate is 5.21%.
60The Black- Scholes price is actually 0.0167, the difference in the last decimal point stemming from the

lognormal approximation used in the discrete time example.
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(the objective case) with the bimodal, fat-tailed density associated with nonzero sentiment

in the example.

The lognormal density is single peaked, not multi-peaked. And coming back to

section 5, let me say that it is the smile pattern in the pricing kernel induced by nonzero

sentiment, that generates a smile pattern in the implied volatility graph. Figure 10 displays

the phi−function associated with the expiration date, (and its underlying lognormal gener-

ators), for the continuous time example in section 5. Note that it is not all that different

from the one period discrete time example portrayed in figure 9.61 My point is that in a

heterogeneous environment, the appearance of “volatility smile” effects and “crashophobia”

humps (Rubinstein, 1994) can stem from multi-modality and fat tails that are absent in a

lognormal environment.62 The smile effect in the left tail in the risk-neutral density func-

tions in my examples reflects the beliefs of the pessimists; the crashophobia hump reflects

the mode of the pessimists’ density functions. Moreover, multi-modality is counterintuitive

for most. In this connection, Jackwerth and Rubinstein (1996) use a smoothing procedure

that produces a unimodal function when they estimate the risk-neutral density from actual

option prices.63

One final issue: all the lognormal examples in the paper assume that traders agree

about the value of volatility. I have made this assumption in order that the Black-Scholes
61When PR is I.I.D., implying a constant interest rate over time, phi and η coincide. Hence, for the

continuous time example described in section 5, phi can be constructed from the constituent risk-neutral

processes. By definition, phi and eta also coincide in the single period example. In the appendix I establish

that the risk-neutral density associated with an event xt has the same form as the associated state price,

but features the discounted value of g(xθR
t , not the undiscounted value. Hence, the phi−function describes

the density function associated with the stochastic process featuring the ratio of the cumulative future value

itc and eta, this being the key variable used to price options in (28).
62Although my examples pertain to options on the market portfolio, the results apply to any underlying

asset. Smile effects stem from the extent of disagreement on payoff relevant states for the underlying asset,

the joint distribution of trader errors, risk tolerance parameters, wealth levels, and discount factors. By no

means is it true that the results for options on the market portfolio need carry over to options on individual

securities.
63There are competing explanations for what gives rise to smile effects in option pricing. The Black-

Scholes option pricing framework has been extended to feature jumps, stochastic interest rates, and stochastic

volatility. As I argued in section 5, when sentiment is nonzero, heterogeneity gives rise to stochastic interest

rates, and can give rise to stochastic volatility and jumps. However, existing models make no reference

to heterogeneity. Notably, Bakshi, Cao, and Chen (1997) report that existing models do a poor job of

explaining the option smile. For a discussion of the role that heterogeneity plays in option smile effects, see

Shefrin (1999).
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price be well-defined. Relaxing the assumption in no way prevents equilibrium option prices

from being computed. However, relaxing the assumption does raise the question of which

volatility to use in the computation of the Black-Scholes price. In the standard approach,

it is the objective volatility that enters as an argument of the Black-Scholes formula. On

this point, I remind readers that it is actually the volatility of the risk-neutral density that

enters the Black-Scholes formula. However, in the Black-Scholes framework, the risk-neutral

volatility and objective volatility are equal. In my framework such equality need not hold.64

13 The Market Portfolio

How sensitive is the objective return distribution of the market portfolio to sentiment?

The answer to this question depends on the representative trader’s risk tolerance, as the

following theorem demonstrates.

Theorem 8 The x0-price qω of the market portfolio has the form:

q(Zω) = ω(x0)ER{
T

∑

t=1

δt
R,tg(xt)θR(xt)−1} (32)

Let rω(x1) denote the return to holding the market portfolio from x0 to the beginning

of x1. Then:

rω(x1) = (g(x1)/δR,1)

∑T
1 ER{δt

R,1g(xt)1−θR(xt)|x1}
∑T

1 ER{δt
R,0g(xt)1−θR(xt)|x0}

(33)

In (33) the base from which growth is measured in the numerator is ω(x1), whereas in the

denominator the base is ω(x0).

The probabilities that underlie the return distribution for the market portfolio are

given by Π. The support of the distribution is given by (33). Theorem 8 establishes how

beliefs affect the support. The return to the market portfolio is a product of three terms, the

growth rate in aggregate consumption, the inverse of δR, and the ratio of two expectations.

To interpret expression (33), consider the case of logarithmic utility, meaning the

case when θR = 1. Here, the expectation ratio in (33) is unity, so the return to the

market portfolio is g(x1)/δR. This implies that the return on the market portfolio is the
64Note that in the numerical examples I presented in this paper, all risk-neutral moments are wealth-

weighted convex combinations of the corresponding values for the individual trader densitity functions.
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consumption growth rate, scaled by the inverse discount factor. Scaling is necessary with

discounting in order to induce saving. Take the logarithmic situation as the base case, and

consider how rω changes relative to the base case as we increase the value of θR.

When θR > 1, the expectation ratio in (33) is not unity. Notice that the nu-

merator of the expectations ratio is conditional on the x1 while the denominator is the

same expectation conditional on x0. Because of the different bases from which growth is

measured in numerator and denominator, a positive trend in expected growth rates leads

the expectation ratio in (33) to lie above unity. Hence theorem 8 implies that a shift in

optimism about consumption growth causes the return rω to be higher than its value under

logarithmic utility. In other words, theorem 8 demonstrates how the value of θR affects the

sensitivity of the return distribution of the market portfolio to trader beliefs.

Under logarithmic utility, the support of the return distribution is independent of

traders’ beliefs. This can be seen in the example of section 3. Theorem 8 makes clear that

the logarithmic utility case is special. The lower the representative trader’s risk tolerance,

the greater the influence of expectations on the value of rω.

There is something else about the impact of lower risk tolerance. It strengthens the

correlation between the return on the market portfolio and the change in the yield curve.

This can be seen by comparing (23) and (33).

14 Specific Behavioral Assumptions

The results in the paper pertain to heterogeneity, not to specific behavioral features. Yet,

readers of this paper have consistently asked me to relate the results to the literature that

focuses on behavioral phenomena; hence, I have added this section in response to the request.

The literature in behavioral finance is principally concerned with two types of phenomena:

(1) judgmental errors in probability beliefs; and (2) prospect theoretic preferences (gains,

losses, reference points, and an S-shaped utility function). In this section, I discuss both

phenomena, beginning with judgmental errors. Please note that I intend for the discussion

in this section to be qualitative, rather than precise.

In a behavioral pricing framework, there are two processes to model, the funda-

mental process based on aggregate consumption growth g, and the process governing the

evolution of sentiment λ.65 The variables that underlie the sentiment process are a mix:
65In a continuous time framework, it is typical to assume that the growth rate in aggregate consumption

43



individual traders’ beliefs, risk-tolerance parameters, wealth levels, and the fundamental

process itself. Consider each, beginning with beliefs.

Shefrin and Statman (1994) propose two classes of quasi-Bayesian behaviorally-

motivated learning structures that underlie beliefs Ph(xt).66 One group of traders under-

weights base rates in applying Bayes’ rule to update conditional probabilities. This error

induces traders to predict the continuation of recent trends. The second group succumbs to

the “law of small numbers,” and tends to predict the reversal of recent trends. Notably, both

types of quasi-Bayesian traders are implicitly overconfident. Their priors are excessively

tight, relative to true Bayesians.67 If the objective process Π is Markovian and Ergodic,

true Bayesians will eventually learn the true probabilities. However, quasi-Bayesians will

not, since their beliefs do not typically converge. There is a view in traditional finance that

traders’ errors are temporary, and will disappear with learning. In contrast, the literature

in behavioral decision making contains many studies showing that people learn very slowly,

and that errors persist in the face of experience.68

Sentiment λ is the aggregate reflection of traders’ errors. The degree to which an

individual trader’s error process affects sentiment depends on the size of the trader’s trades.

λ depends on risk tolerance and wealth because these variables provide the weights used

to aggregate trader errors. Traders who are wealthier and more tolerant of risk take larger

positions than traders who are less wealthy and less tolerant of risk.

Sentiment is time varying. The magnitude of λ varies as wealth shifts between

traders who have taken the opposite sides of trades, a point I emphasized in section 4.

This is because the weight attached to a trader’s beliefs is an increasing function of his

trading success. Along a high consumption growth sequence, base rate underweighters will

become unduly optimistic, and sentiment will move in the positive direction. Along a low

consumption growth sequence, the reverse will occur. In a volatile segment, with frequent

alternation between high and low consumption growth, weight will shift to the traders who

believe in the law of small numbers. These traders overestimate the degree of volatility.

During those segments when consumption growth is volatile, the kernel will accord their

growth follows a square root (Cox-Ingersoll-Ross) process. How about the process governing λ?
66Both stem from the “representativeness” heuristic (Tversky and Kahneman, 1974).
67However, neither type is uniformly optimistic nor uniformly pessimistic. Rather optimism and pessimism

stem from the interaction of the heuristics they employ and the recent history they observe.
68My examples in sections 3 and 4 feature zero learning: traders never adjust their estimates of the

underlying branch probabilities. This is an extreme case. Traders do learn, albeit inefficiently.
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beliefs greater weight, and returns will amplify the volatility in consumption growth. What

determines the relative occurrence of the different types of segments? The objective process

{Π, g}.

There is a widespread view that CRRA-based consumption growth models are

incapable of explaining security returns. One reason for this view is the equity premium

puzzle (Mehra and Prescott, 1985): a consumption based model seems incapable of explain-

ing the historical equity premium in the U.S. market. This might be the case. However,

it is important to recognize that the traditional arguments based on CRRA-based con-

sumption models ignore traders’ errors, and hence ignore sentiment. Instead, the burden of

explaining the equity premium falls to complex dynamics in the underlying process, such

as regime shifts (Whitelaw, 2000). However, regime shifts occur naturally when beliefs are

heterogeneous and the beliefs of the representative trader are a formed as a wealth weighted

combination of the beliefs of the individual traders.

In theory, the relative contribution of sentiment on the pricing kernel can be much

larger than that of consumption growth. Fundamentals can get short shrift, at least along

particular segments of the realized path. Think about theorems 4 and 5, which characterize

the term structure in terms of aggregate consumption growth. These theorems suggest

that information releases about consumption growth should be one of the most important

pieces of news bond traders receive. Nevertheless, Balduzzi, Elton, and Green (1997) find

that consumption growth is one of the least important variables influencing the Treasury

market. Why? I suggest that the answer concerns the contribution of sentiment relative to

fundamentals in determining returns in the short-run.

The process governing the evolution of sentiment λ = ln(PR/Π) is based on the

beliefs of a representative trader. I remind readers that in the presence of heterogeneity, the

beliefs of the representative trader need not have the same structure as those of individual

traders, and typically do not. The representative trader aggregates individual beliefs, but

with stochastic, time-varying weights. In a prolonged period of favorable fundamentals, the

representative trader will move in the direction of irrational exuberance. In a prolonged

period featuring unfavorable fundamentals, the reverse will be true. In a period of rapidly

fluctuating fundamentals, the representative trader will display frequent changes of opinion.

Market returns will tend to become more positively autocorrelated along long runs, and

move to being negatively autocorrelated during periods that feature short runs. In other

words, the process governing λ will have a stochastic autocorrelation structure that depends
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on the history.

The discussion in the previous paragraph leads me to reiterate a methodological

warning to theorists whose models begin by assuming a representative trader. It is danger-

ous to treat the representative trader as an individual trader. This applies to both models

of rational behavior and non-rational behavior. In the presence of heterogeneity, the rep-

resentative trader will typically be neither rational, nor be subject to the same type of

error structure as a single individual trader would. Rather the representative trader is a

dynamically evolving amalgam of all the individual traders.

There are additional behavioral elements concerning preferences, most notably loss

aversion and reference point-based mental accounting. These features can be accommodated

within the present framework, with minor modifications. Shefrin and Statman (1989) ex-

plore the implications for the pricing kernel that stem from the introduction of prospect

theory preferences (Kahneman and Tversky, 1979). A prospect theory utility function is

S-shaped, and is defined over consumption changes (i.e., gains and losses) relative to a ref-

erence point. The S-shape depicts risk aversion in the domain of gains, and risk seeking in

the domain of losses.69

Shefrin and Statman (1989) demonstrate that the introduction of prospect theory

traders tends to flatten the graph of the pricing kernel. Prospect theory traders tend to shun

claims that pay off in loss states, typically those for which m(xt) is high, in exchange for

claims that pay off in gains states, typically those for which m(xt) is low.70 As the relative

proportion, and wealth, of prospect theory traders increases, the graph of the pricing kernel

begins to flatten in the loss states segment. If it flattens completely, turning horizontal,

then risk averse agents will choose to hold portfolio insurance in equilibrium. They will do

so because the conditional risk premium vanishes, where the conditioning is for states in

which prospect theory traders register losses.

The pricing kernel equation (15) includes time varying stochastic terms for both

risk tolerance θR and time preference δR. Notably, during periods where wealth shifts from
69See also Shefrin-Statman (2000).
70Prospect theory traders act as if they were CRRA-traders who attach low or zero probability to loss

states. Why? Because nonconvexity in the indifference map for the domain of losses leads to boundary

choices for prospect theory traders, just as zero probabilities do for CRRA-traders. In addition, Tversky

and Kahneman (1992) postulate a power function for uh, at least over the domain of gains and losses. One

implication of using a probability transformation to mimic the effect of prospect theory traders is that it

leaves the structure of the pricing kernel intact.

46



those who are less risk-tolerant to those who are more risk-tolerant, the representative trader

becomes more risk tolerant. This phenomenon tends to make the representative trader more

risk tolerant during up markets, a point made by Benninga and Mayshar (1993, 1997). A

similar remark applies to time discounting. Recently, Barberis, Huang, and Santos (1999)

have developed a prospect theory motivated model with the same time varying, stochastic

risk tolerance properties described above. Specifically, they explain the equity premium

puzzle by establishing that prior gains lead to an increase in the market’s tolerance for risk,

whereas prior losses lead to the reverse.

15 Conclusion

I conclude by summarizing the main results about heterogeneity. The central issues in this

paper concern a formal definition for market sentiment, and the manner in which market

sentiment distorts the pricing kernel and the returns to major asset classes: bonds, stocks,

and options. I establish two main results. First, sentiment manifests itself through the

log-likelihood ratio λ. Second, the (or more correctly, a) log-pricing kernel is the sum

of two stochastic processes, a sentiment process λ and a fundamental process based on

aggregate consumption growth.71 Markets are efficient if and only if sentiment λ = 0

uniformly. When sentiment is nonzero, heterogeneity typically induces smile effects into

option pricing, frown effects into mean-variance efficient portfolios, distortions that disrupt

the expectations hypothesis of the term structure, and alterations to the return on the

market portfolio, depending on the risk tolerance profile of the individual traders.

71As mentioned earlier, δR and θR are also stochastic, but the focus of attention is on λ.
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Appendix
This appendix contains proofs of theorems 1,3,6, and 8. Theorem 2 is essentially

proved in the body of the paper. Theorem 4 follows directly from equation (6). Theorem

5 is proved in the body of the paper. The proof of theorem 7 is similar to the proof of

theorem 6, and relies on equation (6).

Proof of theorem 1.

Define

γh(xt) =
ch(x0)(Dh(xt))1/θh

∑H
j=1 cj(x0)

γ(xt) =
H

∑

h=1

γh(xt)

Define trader h’s x0−consumption share

ξh =
ch(x0)

∑H
j=1 cj(x0)

Now use (5) to compute the equilibrium value of g(xt). Obtain

g(xt) =
∑

h ch(xt)
∑

h ch(x0)

=
∑

h

ξh(Dh(xt)/v(xt))1/θh

=
∑

h

γh(xt)v(xt)−1/θh

where γh(xt) is defined in the statement of Theorem 1. Notice that γh(xt) is a consumption

weighted discounted probability moment.

Invert equation (6) to obtain an expression for g(xt), which can be equated to the

preceding expression. This yields

∑

h

γh(xt)v(xt)−1/θh

= (δt
RPR(xt)/v(xt))1/θR(xt)

where PR(xt) is endogenously determined.

Theorem 1 specifies two alternative terms for θR, (9) and (13). The first is a

function of Π, and is derived from Benninga-Mayshar (1993). See below. Note that (5) and
∑

h ch(v) =
∑

h ωh imply that
∑

h αh(xt) = 1 for all xt.
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The second is defined independently of Π. Note that the term γ(xt) is the sum

of the weights used to define θR in (13). This term provides the structure of θR(xt) (in

equation (13)), or more properly 1/θR(xt).

Define the representative trader’s discounted probability moment by

(δt
R,tPR(xt))1/θR(xt) = γ(xt)

Next substitute into (6) and take the logarithm of both sides to obtain

1/θR(xt) =
ln(γ(xt))− ln(g(xt))

ln(v(xt))

Having θR in hand, either (9) or (13), enables us to find δt
RPR(xt) by taking γ(xt) to the

power θR(xt). Obtain δt
R,t as the sum, for fixed t,

∑

xt

γ(xt)θR(xt)

In view of the normalization, obtain PR(xt) as the ratio

PR(xt) =
γ(xt)θR(xt)

δt
R,t

For sake of completeness, I sketch the proof provided by Benninga and Mayshar

(1993) characterizing θR. Based on (5), the equilibrium condition
∑

h(ch(v)−ωh) = 0, and

the kernel variable V = v/Π, Benninga-Mayshar define the implicit function

F (C, V ) =
∑

h

(ch(x0)/C)[δt
h/V ]1/θh = 1

They note that by the principle of expected utility maximization, the representative trader’s

marginal utility at C will be proportional to V . In turn, this implies that θR, the Arrow-

Pratt coefficient of relative risk aversion can be defined locally by −CV ′(C)/V (C). By

computing ∂F/∂C and ∂F/∂V , they observe that

V ′(C) =
−∂F/∂C
∂F/∂V

=
−(V ′(C)/C)
∑

h αh(xt)/θh

which, taken together with the local Arrow-Pratt measure, completes their proof.

Proof of theorem 3.

To prove Theorem 3, compute the first-order-condition associated with maximizing

expected quadratic utility.

rMV (x1) = ν−1(1− (ξv(x1)/Π(x1))) (34)
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where ξ is the Lagrange multiplier for the optimization and has the form:

ξ =
∑

y1
v(y1)− ν

∑

y1
v(y1)2/Π(y1)

(35)

Next observe that

M(x1) = v(x1)/Π(x1) = δR,1Λ(x1)g(x1)−θR

v(x1)2/Π(x1) = Π(x1)M(x1)2

∑

y1

v(y1) = EΠ{M(y1)} = δR,1EΠ{Λ(x1)g(x1)−θR(x1)|x0}

∑

y1

v(y1)2/Π(y1) = EΠ{M(y1)2}

Substitution into (35) completes the proof.

Proof of theorem 6.

From the perspective of xt−1, η(xt) is the future value of a contingent xt real

dollar payoff. Given xt−1, the future value of a contract which delivers a certain dollar at

date t must be one dollar. This is why
∑

yt∈S(xt−1) η(yt) = 1. In other words, the future

value of yt−claims are nonnegative and sum to unity. Hence they constitute a probability

distribution. Since they deal with the transition from xt−1, {η(yt)} are one-step branch

probabilities of a stochastic process.

Under the stochastic process, the probability attached to the occurrence of xt

is obtained by multiplying the one-step branch probabilities leading to xt. To interpret

this product, consider the denominator of (27). This term can be matched with the nu-

merator of the xt−1 one-step branch probability to form v(xt−1)/
∑

yt∈S(xt−1) v(yt). The

latter term is simply one plus the single period risk free interest rate i1(xt−1) that ap-

plies on the xt−1-market. Therefore the probability of the branch leading to xt is the

product of the single period stochastic interest rates and the present value of an xt-claim:

i1(x0)i1(x1) · · · i1(xt−1)v(xt). The product of the single period interest rates defines the cu-

mulative return itc(xt) to holding the short-term risk-free security, with reinvestment, from

date 0 to date t.

A call option pays qz(xt)−K at date t, if xt ∈ AE , the set of date-event pairs where

the option expires in-the-money. The present value of the claims that make up the option
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payoff is computed using state prices v. But the present value of an xt−contingent dollar

is its future value discounted back by the product of the one-period risk-free rates. The

discounted contingent future dollar is simply the ratio of a risk-neutral probability η(xt) to a

compounded interest rate ic(xt). Finally, the risk-neutral probability η(xt) is unconditional.

To convert to a distribution conditional on exercise, divide η(xt) by Pη{AE |x0}. Using the

conditional expectation in place of the unconditional expectation leads to the appearance

of Pη{AE |x0} in (28).

Proof of theorem 8.

The proof of this theorem is computational. The one-period return to the market

portfolio is the sum of the date 1 dividend and date 1 price, divided by the date 0 price,

i.e. (ω(x1) + q1(Zω))/q0(Zω). Use (8) to compute the present values two future aggregate

consumption stream: the value of the unconditional process under v, and the value of the

process, conditional on x1. The present value of these two streams appear respectively, in

the denominator and numerator of (33), with the numerator value divided by v(x1). This

completes the proof.
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